
A New Two-Server Approach for Authentication with Short Secrets

John Brainard, Ari Juels, Burt Kaliski, and Michael Szydlo
RSA Laboratories

Bedford, MA 01730, USA
E-mail: {jbrainard,ajuels,bkaliski,mszydlo}@rsasecurity.com

Abstract

Passwords and PINs continue to remain the most
widespread forms of user authentication, despite grow-
ing awareness of their security limitations. This is be-
cause short secrets are convenient, particularly for an in-
creasingly mobile user population. Many users are in-
terested in employing a variety of computing devices
with different forms of connectivity and different soft-
ware platforms. Such users often find it convenient to
authenticate by means of passwords and short secrets, to
recover lost passwords by answering personal or “life”
questions, and to make similar use of relatively weak se-
crets.

In typical authentication methods based on short secrets,
the secrets (or related values) are stored in a central
database. Often overlooked is the vulnerability of the se-
crets to theft en bloc in the event of server compromise.
With this in mind, Ford and Kaliski and others have pro-
posed various password “hardening” schemes involv-
ing multiple servers, with password privacy assured pro-
vided that some servers remain uncompromised.

In this paper, we describe a new, two-server se-
cure roaming system that benefits from an especially
lightweight new set of protocols. In contrast to previous
ideas, ours can be implemented so as to require essen-
tially no intensive cryptographic computation by clients.
This and other design features render the system, in our
view, the most practical proposal to date in this area. We
describe in this paper the protocol and implementation
challenges and the design choices underlying the sys-
tem.

1 Introduction

In this paper, we consider a basic, pandemic security
problem: How is it possible to provide secure services

to users who can authenticate using only short secrets or
weak passwords?

This problem is of growing importance as Internet-
enabled computing devices become ever more prevalent
and versatile. These devices now include among their
ranks an abundant variety of mobile phones, personal
digital assistants (PDAs), and game consoles, as well as
laptop and desktop PCs. The availability of networks
of computers to highly mobile user populations, as in
corporate environments, means that a single user may
regularly employ many different points of remote ac-
cess. The roaming user may additionally employ any
of a number of different devices, not all of which neces-
sarily possess the same software or configuration.

While smartcards and similar key-storage devices offer a
secured, harmonized approach to authentication for the
roaming user, they lack an adequately developed sup-
porting infrastructure in many computing environments.
At present, for example, very few computing devices
contain smartcard readers – particularly in the United
States. Furthermore, many users find physical authen-
tication tokens inconvenient. Another point militating
against a critical reliance on hardware tokens is the com-
mon need to authenticate roaming users who have lost
or forgotten their tokens, or whose tokens have malfunc-
tioned. Today, this is usually achieved by asking users
to provide answers to a set of “life” questions, i.e., ques-
tions regarding personal and private information. These
observations stress that roaming users must be able to
employ passwords or other short pieces of memorable
information as a form of authentication. Indeed, short
secrets like passwords and answers to life questions are
the predominant form of authentication for most users
today. They are the focus of our work here.

To ensure usability by a large user population, it is im-
portant that passwords be memorable. As a result, those
used in practice are often highly vulnerable to brute-
force guessing attacks [21]. Good credential-server de-
signs must therefore permit secure authentication as-



suming a weak key (password) on the part of the user.

1.1 SPAKA protocols

A basic tool for mutual authentication via passwords,
and one well developed in the literature, is secure
password-authenticated key agreement (SPAKA). Most
SPAKA protocols are descendants of Bellovin and Mer-
rit’s EKE protocol [3, 4], and are predicated on either
Diffie-Hellman key agreement or key agreement using
RSA. The client and server share a password, which is
used to achieve mutual assurance that a cryptographi-
cally strong session key is established privately by the
two parties. To address the problem of weak passwords,
SPAKA protocols are constructed so as to leak no pass-
word information, even in the presence of an active at-
tacker. When used as a means of authentication to ob-
tain credentials from a trusted server, a SPAKA protocol
is typically supplemented with a throttling or lockout
mechanism to prevent on-line guessing attacks. Many
roaming-credentials proposals involve use of a SPAKA
protocol as a leverage point for obtaining credentials, or
as a freestanding authentication protocol. A comprehen-
sive, current bibliography of research papers on the topic
of SPAKA protocols (of which there are dozens) is main-
tained by David Jablon, and may be found at [17].

The design of most SPAKA protocols overlooks a fun-
damental problem: The server itself represents a serious
vulnerability. As SPAKA protocols require the verifying
server to have cleartext access to user passwords (or to
derivative material), compromise of the server leads po-
tentially to exposure of the full database of passwords.
While many SPAKA protocols store passwords in com-
bination with salt or in some exponentiated form, an at-
tacker who compromises the server still has the possi-
bility of mounting off-line dictionary attacks. Addition-
ally, these systems offer no resistance to server corrup-
tion. An attacker that gains control of the authenticating
server can spoof successful login attempts.

To address this problem, Ford and Kaliski [13] in-
troduced a system in which passwords are effectively
protected through distribution of trust across multiple
servers. Mackenzie, Shrimpton, and Jakobsson [24] ex-
tended this system, leading to more complex protocols,
but with rigorous security reductions in a broadly inclu-
sive attack model. Our work in this paper may be re-
garded as a complement, rather than a successor to the
work of these authors. We propose a rather different
technical approach, and also achieve some special bene-
fits in our constructions, such as a substantially reduced

computational load on the client. At the same time, we
consider a different, and in our view more pragmatic se-
curity model than that of other distributed SPAKA pro-
tocols.

1.2 Previous work

The scheme of Ford and Kaliski reduces server vulner-
ability to password leakage by means of a mechanism
called password hardening. In their system, a client par-
lays a weak password into a strong one through inter-
action with one or multiple hardening servers, each one
of which blindly transforms the password using a server
secret. Ford and Kaliski describe several ways of do-
ing this. Roughly speaking, the client in their protocol
obtains what may be regarded as a blind function eval-
uation σi of its password P from each hardening server
Si. (The function in question is based on a secret unique
to each server and user account.) The client combines
the set of shares {σi} into a single secret σ, a strong key
that the user may then use to decrypt credentials, authen-
ticate herself, etc. Given an appropriate choice of blind
function evaluation scheme, servers in this protocol may
learn no information, in an information-theoretic sense,
about the password P . An additional element of the pro-
tocol involves the user authenticating by means of σ (or
a key derived from it) to each of the servers, thereby
proving successful hardening. The harderened password
σ is then employed to decrypt downloaded credentials
or authenticate to other servers. We note that the Ford-
Kaliski system is designed for credential download, and
not password recovery; our system is specially designed
to support both. Another important distinction is that in
the Ford-Kaliski system, the client interacts with both
servers directly. As we describe, an important feature of
our proposed system is the configuration of one server
in the back-end, yielding stronger privacy protection for
users.

Mackenzie et al. extend the system of Ford and Kaliski
to a threshold setting. In particular, they demonstrate a
protocol such that a client communicating with any k
out of n servers can establish session keys with each by
means of password-based authentication; even if k − 1
servers conspire, the password of the client remains pri-
vate. Their system can be straightforwardly leveraged to
achieve secure downloadable credentials. The Macken-
zie et al. system, however, imposes considerable over-
head of several types. First, servers must possess a
shared global key and local keys as well (for a total of
4n + 1 public keys). The client, additionally, must store
n + 1 (certified) public keys. The client must perform



several modular exponentiations per server for each ses-
sion, while the computational load on the servers is high
as well. Finally, the Mackenzie et al. protocol is some-
what complex, both conceptually and in terms of imple-
mentation. On the other hand, the protocol is the first
such provided with a rigorous proof of security under
the Decision Diffie-Hellman assumption [7] in the ran-
dom oracle model [2].

Frykholm and Juels [15] adopt a rather different ap-
proach, in which encrypted user credentials are stored
on a single server. In this system, no trust in the server is
required to assure user privacy under appropriate cryp-
tographic assumptions. Roughly stated, user credentials
are encrypted under a collection of short passwords or
keys. Typically, these are answers to life questions.
While the Frykholm-Juels system provides error toler-
ance, allowing the user to answer some questions incor-
rectly, it is somewhat impractical for a general popula-
tion of users, as it requires use of a large number of ques-
tions. Indeed, the authors recommend a suite of as many
as fifteen such questions to achieve strong security. The
work of Frykholm and Juels is an improvement on that
of Ellison et al. [11], which was found to have a serious
security vulnerability [5]. This approach may be thought
of as an extension to that of protecting credentials with
password-based encryption. The most common basis for
this in practice is the PKCS #5 standard [1].

1.3 Our work: a new, lightweight system

It is our view that most SPAKA protocols are over-
engineered for real-world security environments. In par-
ticular, we take the position that that mutual authenti-
cation is often not a requirement for roaming security
protocols per se. Internet security is already heavily
dependent upon a trust model involving existing forms
of server-side authentication, particularly the well stud-
ied Secure Sockets Layer protocol (SSL) [14]. SSL is
present in nearly all existing Web browsers. Provided
that a browser verifies correct binding between URLs
and server-side certificates, as most browsers do, the
user achieves a high degree of assurance of the identity
of the server with which she has initiated a given session.
In other words, server authentication is certainly impor-
tant, but need not be provided by the same secret as user
authentication. Thus many SPAKA protocols may be
viewed as replicating functionality already provided in
an adequately strong form by SSL, rather than building
on such functionality.

Moreover, it may be argued that SPAKA protocols carry

a hidden assumption of trust in SSL or similar mecha-
nisms to begin with. SPAKA protocols require the avail-
ability of special-purpose software on the client side.
Given that a mobile user cannot be certain of the (cor-
rect) installation of such software on her device, and that
out-of-band distribution of special-purpose software is
rare, it is likely that a user will need to download the
SPAKA software itself from a trusted source. This ar-
gues an a priori requirement for user trust in the identity
of a security server via SSL or a related mechanism. In
this paper, we assume that the client has a pre-existing
mechanism for establishing private channels with server-
side authentication, such as SSL.

Our system represents an alternative to SPAKAs in ad-
dressing “hardening” problem; it is a two-server solu-
tion that is especially simple and practical. The idea is
roughly as follows. The client splits a user’s password
(or other short key) P into shares for the two servers. On
presenting a password P ′ for authentication, the client
provides the two servers with a new, random sharing of
P ′. The servers then compare the two sharings of P and
P ′ in such a way that they learn whether P = P ′, but no
additional information. The client machine of the user
need have no involvement in this comparison process.

As we explain, it is beneficial to configure our system
such that users interact with only one server on the front-
end, and pass messages to a second, back-end server via
a protected tunnel. This permits the second server to
reference accounts by way of pseudonyms, and thereby
furnishes users with an extra level of privacy. Such pri-
vacy is particularly valuable in the case where the back-
end server is externally administered, as by a security-
services organization. Much of our protocol design cen-
ters on the management of pseudonyms and on protec-
tion against the attacks that naı̈ve use of pseudonyms
might give rise to.

1.4 Organization

In section 2, we describe the core cryptographic protocol
our system for two-server comparison of secret-shared
values. We provide an overview of our architecture in
section 3, discussing the security motivations behind our
choices. In section 4, we describe two specialized proto-
cols in our system; these are aimed at preventing false-
identifier and replay attacks. We provide some imple-
mentation details for our system in section 5. We con-
clude in section 6 with a brief discussion of some future
directions.



2 An Equality-Testing Protocol

Let us first reiterate and expand on the intuition behind
the core cryptographic algorithm in our system, which
we refer to as equality testing. The basic idea is for
the user to register her password P by providing ran-
dom shares to the two servers. On presenting her pass-
word during login, she splits her password into shares in
a different, random way. The two servers compare the
two sharings using a protocol that determines whether
the new sharing specifies the same password as the orig-
inal sharing, without leaking any additional information
(even if one server tries to cheat). For convenience, we
label the two servers “Blue” and “Red”. Where appro-
priate in subscripts, we use the lower-case labels “blue”
and “red”.

Registration: Let H be a large group (of, say, 160-bit
order), and + be the group operator. Let f be a collision-
free hash function f : {0, 1}∗ → H. To share her pass-
word at registration, the user selects a random group el-
ement R ∈U H. She computes the share Pblue for Blue
as Pblue = f(P ) + R, while the share Pred of Red is
simply R. Observe that the share of either server indi-
vidually provides no information about P .

Authentication: When the user furnishes password P ′

to authenticate herself, she computes a sharing based on
a new random group element R′ ∈U H. In this sharing,
the values P ′

blue = f(P ′) + R′ and P ′
red = R′ are sent

to Blue and Red respectively.

The servers combine the shares provided during reg-
istration with those for authentication very simply as
follows. Blue computes Qblue = Pblue − P ′

blue =
(f(P )− f(P ′)) + (R − R′), while Red similarly com-
putes Qred = Pred − P ′

red = R − R′. Observe that
if P = P ′, i.e., if the user has provided the correct
password, then f(P ) and f(P ′) cancel, so that Qblue =
Qred. Otherwise, if the user provides P 6= P ′, the result
is that Qblue 6= Qred (barring a collision in f ). Thus,
to test the user password submitted for authentication,
the two servers need merely test whether Qblue = Qred,
preferably without revealing any additional information.

For this task of equality testing, we require a second,
large group G of order q, for which we let multiplication
denote the group operation. The group G should be one
over which the discrete logarithm problem is hard. We
assume that the two servers have agreed upon this group
in advance, and also have agreed upon (and verified) a

generator g for G. We also require a collision-free map-
ping w : H → G. For equality testing of the values Qred

and Qblue, the idea is for the two servers to perform a
variant of Diffie-Hellman key exchange. In this variant,
however, the values Qred and Qblue are “masked” by the
Diffie-Hellman keys. The resulting protocol is inspired
by and may be thought of as a technical simplification
of the PET protocol in [18]. Our protocol uses only one
component of an El Gamal ciphertext [16], instead of the
usual pair of components as in PET. Our protocol also
shares similarities with SPAKA protocols such as EKE.
Indeed, one may think of the equality Qred = Qblue as
resulting in a shared secret key, and inequality as yield-
ing different keys for the two servers.

There are two basic differences, however, between the
goal of a SPAKA protocol and the equality-testing proto-
col in our system. A SPAKA protocol, as already noted,
is designed for security over a potentially unauthenti-
cated channel. In contrast, our intention is to operate
over a private, mutually authenticated channel between
the two servers. Moreover, we do not seek to derive a
shared key from the protocol execution, but merely to
test equality of two secret values with a minimum of in-
formation leakage. Our desired task of equality testing
in our system is known to cryptographers as the socialist
millionaires’ problem. (The name derives from the idea
that two millionaires wish to know whether they enjoy
equal financial standing, but do not wish to reveal addi-
tional information to one another.) Several approaches
to the socialist millionaires’ problem are described in
the literature, e.g., [8, 12, 19]. In most of this work,
researchers are concerned in addressing the problem to
ensure the property of fairness, namely that both parties
should learn the answer or neither. We do not consider
this issue here, as it does not have a major impact on the
overall system design. (A protocol unfairly terminated
by one server in our system is no worse than a password
guess initiated by an adversary, and may be immediately
detected by the other server.) By designing a version
of the socialist millionaires’ protocol without fairness,
moreover, we are able to achieve much better efficiency
than these previous solutions, which at best require a
number of exponentiations linear in the bit-length of the
compared values. Our protocol effectively involves only
constant overhead. It is more efficient than the proto-
col in [18], the only other solution to the socialist mil-
lionaires’ problem that we know of in the literature with
constant overhead.

Note that in this protocol, the client need perform
no cryptographic computation, but just a single (addi-
tion) operation in H. (The client performs some cryp-
tographic computation to establish secure connections



with Blue and Red in our system, but this may occur
via low-exponent RSA encryption – as in SSL – and
thus involves just a small number of modular multiplica-
tions.) Moreover, once the client has submitted a shar-
ing, it need have no further involvement in the authen-
tication process. Red and Blue together decide on the
correctness of the password submitted for authentica-
tion. Given a successful authentication, they can then
perform any of a range of functions providing privileges
for the user: Each server can send a share of a key for
decrypting the user’s downloadable credentials, or two
servers can jointly issue a signed assertion that the user
has authenticated, etc.

2.1 Protocol details

As we have already described the simple sharing proto-
cols employed by the client in our system for registration
and authentication, we present in detail only the protocol
used by the servers to test the equality Qred = Qblue.
We assume a private, mutually authenticated channel
between the two servers. Should the initiating server
(Blue) try to establish multiple, concurrent authentica-
tion sessions for a given user account, the other server
(Red) will refuse. (In particular, in Figure 1, Red will
reject the initiation of a session in which the first flow
specifies the same user account as for a previously es-
tablished, active authentication session.) Alternative ap-
proaches permitting concurrent login requests for a sin-
gle account are possible, but more complicated. If Blue
initiates an authentication request with Red for a user U
for which Red has received no corresponding authenti-
cation request from the user, then Red, after some appro-
priate delay, will reject the authentication.

Let Qblue,U denote the current share combination that
Blue wishes to test for user U , and Qred,U the analo-
gous Red-server share combination for user U . In this
and any subsequently described protocols in this paper,
if a server fails to validate any mathematical relation de-

noted by
?
=,

?

6=,
?
>, or

?
∈, it determines that a protocol

failure has taken place; in this case, the authentication
session is terminated and the corresponding authentica-
tion request rejected.

We let ∈R denote uniform random selection from a set.
We indicate by square brackets those computations that
Red may perform prior to protocol initiation by Blue, if
desired. Our password-equality testing protocol is de-
picted in Figure 1. We use subscripts red or 1 to denote
values computed or received by Red and blue or 0 for
those of Blue. We alternate between these forms of no-

tation for visual clarity. We let h denote a one-way hash
function (modeled in our security analysis by a random
oracle). In the case where a system may include multiple
Blue and/or Red servers, the hash input should include
the server identities as well. We let ‖ denote string con-
catenation.

For the sake of simplicity, we fix a particular group G
for our protocol description here. In particular, we con-
sider G to be the prime subgroup of order q in Zp, for
prime p = 2q + 1. Use of this particular group is re-
flected in our protocol by: (1) Use of even exponents
e0 and e1 to ensure group membership in manipulation
of transmitted values, and (2) Membership checks over
{2, . . . , p− 2}. For other choices of group, group mem-
bership of manipulated values may be ensured by other
means. All arithmetic here is performed mod p.

Implementation choices: A typical choice for p, and
that adopted in our system, is a 1024-bit prime. Recall
that we select G to be a subgroup of prime order q for
p = 2q + 1. For H, we simply select the group consist-
ing of, e.g., 160-bit strings, with XOR as the group oper-
ator. We note that a wide variety of other choices is pos-
sible. For example, one may achieve greater efficiency
by selecting shorter exponents e0 and e1, e.g., 160 bits.
This yields a system that we hypothesize may be proven
secure in the generic model for G, but whose security
has not been analyzed in the literature. One might also
use smaller subgroups, in which case group-membership
testing involves fair computational expense. Alterna-
tively, other choices of group G may yield higher effi-
ciency. One possibility, for example, is selection of G as
an appropriate group over an elliptic curve. This yields
much better efficiency for the exponentiation operations,
and also has an efficient test of group membership.

Security: In brief, security in our model states that an
adversary with active control of one of the two servers
and an arbitrary set of users can do essentially no bet-
ter in attacking the accounts of honest users than ran-
dom, on-line guessing. Attacks involving such guessing
may be contained by means of standard throttling mech-
anisms, e.g., shutting down a given account after three
incorrect guesses. Of course, our scheme does not offer
any robustness against simple server failures. This may
be achieved straightforwardly through duplication of the
Red and Blue servers. We also assume fully private
server-authenticated channels between the client and the
two servers. In this model, and with the random-oracle
assumption [2] on the hash function, we claim that the
security of our core cryptographic algorithm for equal-



BLUE server RED server

e0 ∈R {2, 4, . . . , q − 1} [e1 ∈R {2, 4, . . . , q − 1}]
A = w(Qblue,U ) [Y ′

1 = ge1]
Y0 = Age0

Y0,U
−→

B = w(Qred,U )
Y1 = BY ′

1

Zred = (Y0/B)e1

Zred

?
∈ {2, . . . , p− 2}

Hred = h(Zred ‖ Y0 ‖ Y1 ‖ U )
Y1,Hred
←−

Zblue = (Y1/A)e0

Zblue

?
∈ {2, . . . , p− 2}

Hblue = h(Zblue ‖ Hred)
Hblue−→

Hred
?
= h(Zblue ‖ Y0 ‖ Y1 ‖ U) Hblue

?
= h(Zred ‖ Hred)

Figure 1: Password-equality testing protocol

ity testing may be reduced to the computational Diffie-
Hellman assumption on the group G.

3 Architectural Motivation and Overview

The security of our equality-testing protocol in our sys-
tem depends upon the inability of an attacker to compro-
mise both Red and Blue. Heterogeneity in server config-
urations is thus an important practical security consid-
eration here. At the simplest level, the Red and Blue
servers may run different operating systems, thereby
broadening the range of technical obstacles confronting
the would-be attacker. A further possible step in this
direction would be to situate Red and Blue within differ-
ent organizations, with the hope of minimizing the risk
of insider or social-engineering attacks.

The distribution of security across organizations also
provides an appealing model of risk management in
which legal and financial responsibility for compromise
can be flexibly allocated. We can view this as a form of
privacy outsourcing, in which one server (say, Blue) is
operated by a service provider and the other (say, Red) is
operated by what we may refer to as a privacy provider.
The privacy provider might be an organization with spe-
cialized expertise that is willing to assume the primary

burden of security maintenance and likewise to assume
a large portion of the legal and financial liability associ-
ated with privacy breaches.

For a service provider to adopt this approach in a way
appealing to a large and potentially mobile user popula-
tion, there are two salient requirements:

• Universality: There should be no need for clients
to install special-purpose software. In particular,
clients should be able to interface with the system
by way of standard browser components such as
Java and HTML.

• Pseudonymity: Red, i.e., the privacy provider,
should be unable to gain explicit access to the user
names associated with accounts. At a minimum,
clients should be able to interact with this server
pseudonymously, i.e., by way of identifiers unlink-
able with true account names or IP addresses. This
provides a technical obstacle to abuse of account
information on the part of the operator of Red. It
is also useful to employ pseudonyms in this way so
as to limit exposure of account identifiers in case of
compromise of Red.

The requirement of universality in the service-provider
model argues that the software in our system, while per-



haps installed on some clients as a browser plug-in or
standalone executable, should also be available in the
form of a Java applet. This applet is dispensed by Blue in
our system (although it could be dispensed elsewhere).
The applet contains the software to execute our basic
two-server protocol, and also contains a public key for
Red. This public key serves to establish a private chan-
nel from the client to Red via Blue.

Distribution of such applets by Blue raises an immediate
concern: Blue might serve bad applets. In particular, an
attacker that has compromised Blue in an active fashion
can cause that server to distribute applets that contain a
false public key for Red – or indeed that do not even run
the intended protocol. As we have already explained, the
problem of trusted software is present even for SPAKA
protocols, given the need of roaming clients to install
such software on the fly. Applets or other software may
be digitally signed, but most users are unlikely to un-
derstand how to employ browser-provided verification
tools to check the correctness of the associated code-
signing certificate. Rather, we make two observations
on this score. First, active compromise of core compo-
nents of Blue is likely to be much harder than passive
compromise. Some hope may be placed in so-called
“tripwire” tools that are designed specifically to detect
hostile code modification. Additionally, the task of an
attacker in compromising Blue in this way is harder than
active compromise in traditional cryptographic settings,
in the following sense: Any observer can in principle
detect the compromise by inspecting applets. Thus, the
privacy provider might periodically initiate authentica-
tion requests with Blue to monitor its integrity. Another
complementary approach is for Red to distribute to in-
terested clients a piece of software that verifies the hash
of code served by Blue.

The pseudonymity requirement, particularly the notion
that Red should not learn the IP addresses of clients,
suggests that the privacy provider should operate Red
as a back-end server, i.e., a server that only interacts
with other servers, not clients. This is the server-
configuration that we adopt in our system. In particu-
lar, the client in our system communicates with the Red
server via an encrypted tunnel established using the pub-
lic key for Red. There are in fact several other com-
pelling reasons to operate Red as a back-end server:

• Engineering simplicity: Deployment of Red as a
back-end server permits the client to establish a di-
rect connection with only a single server, the nor-
mal mode of use for most services on the Internet.
A service provider may maintain a single front-end

server and treat Red as an external, supporting Web
service.

• System isolation: In the outsourcing model, the
major burden of liability and security is on Red,
and the privacy provider is the primary source of
security expertise. Hence it is desirable to isolate
Red from open communication on the Internet, re-
stricting its interaction instead to one or more Blue
servers exclusively via the protocols in our system,
effectively creating a kind of strong, application-
layer firewall. This imparts to the system as a whole
a higher level of security than if both servers were
directly exposed.

• Mitigation of denial-of-service attacks: Isolation
of Red as a back-end server is also helpful in mini-
mizing the exposure of Red to denial-of-service at-
tacks, which the operator of Blue, having better fa-
miliarity with its own user base, is better equipped
to handle.

A serious concern does arise in conjunction with the
pseudonymity requirement. Blue must identify a given
user name U to Red according to a fixed pseudonym V .
One possible attack, then, is for Red to pose as a client
authenticating under identifier U , and then see which as-
sociated pseudonym V Blue asserts. Red thereby learns
the linkage between U and V . There is effectively no
good (and practical) way to defend against this type of
attack. Instead, we rely on social factors to forestall this
such behavior on the part of Red, namely: (1) As the
service provider, it is Blue that will hold the list of ac-
count names, so that these may be difficult for Red to
accumulate en bloc; and (2) Given the risk of damaged
reputation, Red should be averse to mounting an attack
against pseudonyms. Of course, use of pseudonyms is
still beneficial in that passive compromise of Red will
not reveal true account identifiers.

4 False Pseudonym and Replay Attacks

Our equality-testing protocol is designed to provide se-
curity against corruption of one of the two servers in
a single session. Other security problems arise, how-
ever, as a result of the use of pseudonyms in our system
and also from the need for multiple invocations of the
equality-testing protocol. In particular, additional proto-
cols are needed in our system to defend against what we
refer to as false-pseudonym and replay attacks.



4.1 The false-pseudonym problem

The possibility of a massive on-line false-pseudonym at-
tack by a corrupted Blue server represents a serious po-
tential vulnerability. In particular, Blue might create an
arbitrarily large set of fictitious accounts on Red under
false pseudonyms Ṽ1, Ṽ2, . . ., with a dictionary of pass-
words of its choice. It can then replay genuine authen-
tication requests for a given user’s account against the
pseudonyms Ṽ1, Ṽ2, . . .. By repeating replays until it
achieves a match, Blue thereby learns the secret infor-
mation for account U . This attack is particularly serious
in that it might proceed indefinitely without detection.
Behavior of this kind would not be publicly detectable,
in contrast for instance to the attack involving distribu-
tion of bad applets.

To address this problem, we require that Blue use a se-
cret, static, one-way function f to map user identifiers to
pseudonyms. Blue (in conjunction with the client) then
proves to Red for every authentication request that it is
asserting the correct pseudonym. One challenge in de-
signing a protocol employing this proof strategy is that
the client cannot be permitted to learn the pseudonym for
any account until after it has authenticated. Otherwise,
Red can learn pseudonyms by posing as a client. A sec-
ond challenge – as in all of our protocols – is to design
a proof protocol that it lightweight for Red, Blue, and
especially for the client. We demonstrate a protocol here
that requires no intensive cryptographic computation by
the client – just a modular inversion and a handful of
symmetric-key computations. (With a small modifica-
tion, the modular inversion can be replaced with a mod-
ular multiplication, leading to even lower computational
requirements.)

The basis of our protocol is a one-way function of the
form fx : m→ mx in a group G′ of order q′ over which
the Decision Diffie-Hellman problem is hard. This
choice of one-way function has two especially desirable
features for our protocol construction: (1) It is possible
to prove statements about the application of f by em-
ploying standard non-interactive zero-knowledge proofs
on discrete logarithms; and (2) The function fx has a
multiplicative homomorphism, namely fx(a)fx(b) =
fx(ab). Naturally, so as to keep fx secret, the value x
is an integer held privately by Blue. We let g denote a
generator and y = gx denote a corresponding public key
distributed to Red.

To render the proof protocol lightweight for the client,
we adopt a cut-and-choose proof strategy. The idea is
that a client identifier U is represented as a group ele-

ment in G′. The client computes a random, multiplica-
tive splitting of U over G′ into shares U0 and U1; thus
U = U0U1. The client also computes commitments to
U0 and U1, and transmits these to Red. Blue computes V
by application of fx to each of the shares U0 and U1. In
particular, Blue sends to Red the values V0 = fx(U0)
and V1 = fx(U1). Observe that by the multiplica-
tive homomorphism on fx, Red can then compute the
pseudonym V = fx(U) = fx(U0)fx(U1) = V0V1. To
prove that this pseudonym V is the right one, Red sends
a random challenge bit b to Blue. Blue then reveals Ub

and proves that Vb = fx(Ub), i.e., that the discrete log-
arithms logg(y) and logUb

(Vb) are equal. The probabil-
ity that a cheating Blue is detected in this protocol is
1/2. (More precisely, it is extremely close to 1/2 under
the right cryptographic assumptions.) Thus, if Blue at-
tempts to mount a pseudonym attack, say, 80 times, this
will be detected by Red with overwhelming probability.
Our use of this cut-and-choose protocol, therefore, ren-
ders the threat of such an attack by Blue much smaller
than the threat of a rogue client that submits password
guesses. Meanwhile, Red learns only random, indepen-
dent shares of U , not U itself. We defer further details
of the pseudonym protocol and its integration with the
other protocols in our system to the full paper.

4.2 The replay-attack problem

In the case where the client communicates directly with
Red and Blue via private channels, an adversary in con-
trol of either server does not have the capability of
mounting a replay attack, as it has access to only the
messages sent by the client to one of the servers. In our
implementation here, however, where the client commu-
nicates with Red via Blue, this is no longer the case. In-
deed, without some additional mechanism to ensure the
freshness of the share sent by the client to Red, an adver-
sary in control of Blue can mount a replay attack simply
by repeating all communications from the client. While
the adversary would not learn the password P this way,
she could falsely persuade Red that a successful authen-
tication has just occurred; this would enable the adver-
sary to initiate some joint operation on the user’s behalf
without the user’s presence.

A simple countermeasure is to employ timestamps. In
particular, Blue may transmit the current time to the
client. Along with its other information, the client then
transmits a MAC of this timestamp under R′, the share
provided to Red. Provided that Red stores for each user
account the latest timestamp accompanying a successful
authentication, Red can verify the freshness of a share it



receives by verifying that the associated timestamp post-
dates the latest one stored for the account. A drawback
of this approach, however, is the engineering complexity
introduced by time-synchronization requirements.

An alternative, therefore, is to employ counters. Blue
and Red can maintain for each account a counter logging
the number of successful authentication attempts. Blue,
then, provides the most recent counter value to the client
at the time of authentication, and the client transmits a
MAC under R′ of this counter as an integrity-protected
verifier to be forwarded to Red. Using this verifier, Red
can confirm the freshness of the associated authentica-
tion request.

The drawback to this type of use of counters is its leak-
age of account information. An attacker posing as a
given user can learn the counter value for the user’s ac-
count from Blue, and thus gather information about her
login patterns. An adversary controlling Red can more-
over harvest such counter values without initiating au-
thentication attempts and thus without the risk of alert-
ing Blue to potentially suspicious behavior. By matching
these counter values against those stored by Red, such an
adversary can correlate pseudonyms with user identities.

It is important, therefore, not to transmit plaintext
counter values to clients. Instead, Blue can transmit to
an authenticating client a commitment ζ of the counter
value γ for the claimed user identity [6, 25]. The client
then furnishes to Red (via Blue) a MAC under R′ of ζ.
On initiating an authentication request, Blue provides
to Red the counter value γ and a witness ρ associated
with ζ; together, these two pieces of data decommit the
associated counter value. In this way, the client does
not learn γ, but the integrity of the binding between the
counter value γ and a given authentication request is pre-
served. A hash function represents an efficient way to
realize the commitment scheme, and is computationally
binding and hiding under the random oracle assumption.
In particular, Blue may commit γ as ζ = h(γ ‖ ρ),
where the witness ρ is a random bitstring of length l,
for an appropriate security parameter l (e.g., l ≥ 160).
To decommit, Blue provides γ and ρ, enabling Red to
verify the correctness of ζ. This protocol is depicted in
Figure 2. The flows of this protocol are overlaid on those
of the full authentication protocol in the our system. Let
γblue,U denote the counter value stored for the account
of the user U attempting to authenticate and γred,U be
the corresponding counter value as stored by Red. At
the conclusion of this protocol, on successful authenti-
cation by the user, Red sets γred,U = γblue,U and Blue
increments γblue,U by one.

5 Implementation

In this section we describe the details of our implemen-
tation. In particular we describe how the protocols out-
lined in this paper are integrated, how the servers are
configured, and what the components are of the software
programs running on each server.

The goal of the prototype we describe here, following
the configuration described in section 3, is to improve
the security of a standard Web page login procedure.
This prototype augments a Web application on a Blue
server with the addition of a special authentication li-
brary. While a typical Web site would store or look up
a password in its database, the enhanced server makes a
function call to this library via an API. In order to ful-
fill these requests, the library makes requests to the Red
server, which acts as a privacy provider.

The first component of the prototype is a small Web site
on a Blue server with a user registration and login proce-
dure. The second component is a function library which
implements all protocol steps to be executed on Blue.
The Web application accesses these functions according
to our API. The third component is a Red server, which
processes and responds to the requests coming from the
Blue server, initiated by our library.

In general terms, the message flow may be understood
in terms of the client machine making requests to the
Web application on Blue. The Web application makes
requests to our library on the same server, which in turn
makes requests to the Red server. The client never needs
to communicate directly with the the Red server. All
messages, including encrypted messages destined for the
Red server, are sent via Web requests to the Blue server.
This encapsulation makes the user experience transpar-
ent; the user is not directly aware of the Red server.

Given that the desired client interface is a standard Web
browser, we chose to use HTTP for all message commu-
nication. We set up the two servers with the Linux op-
erating system (8.0), including the Apache Web server,
configured to support CGI (Common Gateway Inter-
face), and SSL. Using HTTPS automatically provides
secure channels between Red and Blue, and between
Blue and the client. We note that a different transport
mechanism between Red and Blue could have been cho-
sen. However, by formatting Blue’s requests to Red
as well formatted text messages over HTTP, Red effec-
tively acts as a private “Web service”, thereby increasing
interoperability and design flexibility.



Client BLUE server RED server

ρ ∈R {0, 1}
l

ζ = h(γblue,U ‖ ρ)
ζ
←−

D = MACR′ [ζ]
D
−→

D,ζ,ρ,γblue,U

−→

D
?
= MACR′ [ζ]

ζ
?
= h(γblue,U ‖ ρ)

γblue,U

?
> γred,U

Figure 2: Replay countermeasure protocol

To serve the Web content and perform authentication
protocol, two programs, compiled from C/C++ source
code, were installed in the proper Web-server directo-
ries. To store permanent and transient user data each of
the servers uses an SQL database. Standard libraries are
used to interact with the database, to format messages,
and to produce HTML.

These building blocks provide the secure on-line mes-
sage communication, the data storage, and the basic
cryptography needed for a variety of protocols. We now
come to the most interesting part, the logic particular to
our system. Upon receipt of any message, the main pro-
cessing function in either Red or Blue checks first that
it is a well formed message corresponding to a specific
step of our protocol. If so, it executes the protocol step,
the components of which are described in this paper.

To complete the description of the prototype we just
need to describe how the equality checking protocol, and
replay countermeasure protocols are integrated, and how
the client makes well formed requests to the Web appli-
cation on Blue without any addition of software to the
Web browser.

This is accomplished as follows. A user wishing to au-
thenticate first obtains from the Blue server an HTML
form and a signed Java applet. The form has an input
field for the user name and password and hidden fields
containing a random salt value and Red’s public key. On
the client machine, the user enters her user name and
password into the input field in the HTML form. When
the user clicks the “submit” button, the applet hashes
the salt with the password, splits the result into shares,
and encrypts one share under Red’s public key. The en-

crypted share, the other share, and a replay-prevention
value are formatted into a composite message to be sent
to Blue as an HTTP request. Of course, the user does not
see this processing, nor the other message components
prepared by the applet. The user is just served a confir-
mation or rejection Web page which indicates whether
or not the authentication attempt has succeeded.

We now explain further how the two client requests trig-
ger the remaining protocol steps described in this pa-
per. We first remark that our actual implementation also
accommodates authentication via life questions, the ap-
proach briefly mentioned in the introduction as an al-
ternate authentication mechanism for users with forgot-
ten passwords or unavailable hardware authentication to-
kens. This extra functionality entails a few technical
details. For one, the Java Applet contains the text of
personal questions posed to the user and also contains
code to split the multiple answers in parallel. Since the
questions may vary by user, the user name may be re-
quested first in a separate form. The system permits de-
cisions regarding the success of authentication via life
questions to occur on a threshold basis. For example, an
administrator may configure the system to authenticate
users successfully if they answer any three out of five
life questions correctly. The system need not reveal to
the user which answers are incorrect if the authentication
as a whole is unsuccessful. (The servers individually,
however, will learn the number which questions were an-
swered correctly.) Another feature worth remarking on
is that Red does not learn or store the questions posed to
individual users.

In Figure 3, we show how the protocol components
for equality testing and replay-prevention are overlaid



to form a the composite authentication protocol. For
simplicity of presentation, we focus here on the basic
case of authentication via a single password, not use
of life questions. All messages in this figure use no-
tation consistent with that in Figures 1 and 2. Addi-
tionally, we denote message components for the Java
applet and final response to the client with Applet and
{PASS/FAIL} and encryption under the Red server’s
public key by ERed. Since we do not include details of
our pseudonym-related protocols in this paper, we omit
that part of our protocol from our description here. For
brevity, we omit the description of certain secondary de-
tails such as data representation, and choice of crypto-
graphic primitives here, but we do note that care must be
taken to correctly handle session timeouts and the lock-
ing out of a user after too many failed login attempts.

Our prototype implements the client as a moderate-sized
Java applet, running to about 2000 source lines. The
applet can process a password in about 80 milliseconds
on a 700MHz Pentium running Windows XP. Note that
this does not include the time required to download and
initialize the applet.

The prototype Blue server consists of a set of CGI pro-
grams written in C++ and C. The prototype code for the
Blue server consists of about 10,000 lines of source, not
including the communications and database libraries.
The prototype Red server is a Linux application built
from about 5,000 lines of C and C++ source code. The
Blue and Red servers used in the prototype (two 500
MHz Pentium III systems running SUSE Linux) can ver-
ify about 10 passwords per second. The prototype was
not optimized for efficiency; we expect that significantly
better performance should be possible.

We also remark that a version of the protocol also runs
under the Windows operating systems, and that our API
is now being implemented as a set of Java classes that
may be embedded in Servlets or Enterprise Java Beans.
The encapsulation of this functionality within a API is
particularly useful, having made its realization language
independent, and convenient to integrate with a variety
of Web applications.

6 Conclusion

As the protocol designs and prototyping experience pre-
sented in this paper demonstrate, our system is a highly
practical approach to the problem of secure authenti-
cation via weak secrets. By employing two servers,

the system is able to offer considerably more protection
of sensitive user data than any single-server approach
could permit. At the same time, the system architec-
ture avoids many of the conceptual and design complex-
ities of multi-server cryptographic protocols – SPAKA
schemes and others – described in the literature.

There are a wealth of other multi-server cryptographic
protocols that can doubtless be brought to practical
fruition in the two-server framework that our system
presents. Some examples include:

• credential download, where encrypted credentials
are stored on one server and the decryption key is
stored on the other;

• threshold digital signing (see, e.g., [22, 23] for dis-
cussion of a special two-party protocol);

• joint authorization (and auditing) of self-service
user administration operations such as password re-
set;

• privacy-preserving information delivery as in, e.g.,
[9, 10, 20].

Our hope is that our system may serve as a useful spring-
board for the practical realization of these and related
concepts from the security literature.

References

[1] PKCS (Public-Key
Cryptography Standard) #5 v2.0, 2002. Available
at www.rsasecurity.com/rsalabs/pkcs.

[2] M. Bellare and P. Rogaway. Random oracles
are practical: A paradigm for designing efficient
protocols. In 1st ACM Conference on Computer
and Communications Security, pages 62–73. ACM
Press, 1993.

[3] S. M. Bellovin and M. Merritt. Encrypted key ex-
change: Password-based protocols secure against
dictionary attacks. In IEEE Computer Society Sym-
posium on Research in Security and Privacy, pages
72–84. IEEE Press, 1992.

[4] S. M. Bellovin and M. Merritt. Augmented en-
crypted key exchange. In 1st ACM Conference
on Computer and Communications Security, pages
244–250. ACM Press, 1993.



Mes # Client← (SSL)→ BLUE BLUE ← (SSL)→ RED

1
U
−→

2
Applet,ζ
←−

3
U,f(P ′)+R′,Ered(R′),D

−→

4
Ered(R′),Y0,U,D,ζ,ρ,γblue,U

−→

5
Y1,Hred
←−

6
Hblue−→

7
{PASS/FAIL}

←−

Figure 3: Integrated message flow (without pseudonym protocol)

[5] D. Bleichenbacher and P. Q. Nguyen. Noisy poly-
nomial interpolation and noisy Chinese remainder-
ing. In B. Preneel, editor, EUROCRYPT 2000,
pages 53–69. Springer-Verlag, 2000. LNCS no.
1807.

[6] M. Blum. Coin flipping by telephone. In Proceed-
ings of 24th IEEE Compcon, pages 133–137, 1982.

[7] D. Boneh. The Decision Diffie-Hellman problem.
In ANTS ’98, pages 48–63. Springer-Verlag, 1998.
LNCS no. 1423.

[8] F. Boudot, B. Schoenmakers, and J. Traoré. A fair
and efficient solution to the socialist millionaires’
problem. Discrete Applied Mathematics, 111(1-
2):23–36, 2001.

[9] D. Chaum. Untraceable electronic mail, return ad-
dresses, and digital pseudonyms. Communications
of the ACM, 24(2):84–88, 1981.

[10] Benny Chor, Oded Goldreich, Eyal Kushilevitz,
and Madhu Sudan. Private information retrieval.
In IEEE Symposium on Foundations of Computer
Science, pages 41–50, 1995.

[11] C. Ellison, C. Hall, R. Milbert, and B. Schneier.
Protecting secret keys with personal entropy. Jour-
nal of Future Generation Computer Systems,
16(4):311–318, February 2000.

[12] R. Fagin, M. Naor, and P. Winkler. Comparing in-
formation without leaking it. CACM, 39(5):77–85,
May 1996.

[13] W. Ford and B. S. Kaliski Jr. Server-assisted gen-
eration of a strong secret from a password. In Pro-
ceedings of the IEEE 9th International Workshop
on Enabling Technologies (WETICE). IEEE Press,
2000.

[14] A.O. Freier, P. Karlton, and P.C. Kocher. The
SSL protocol version 3.0, November 1996. URL:
www.netscape.com/eng/ssl3/draft302.txt.

[15] N. Frykholm and A. Juels. Error-tolerant password
recovery. In P. Samarati, editor, 8th ACM Confer-
ence on Computer and Communications Security,
pages 1–9. ACM Press, 2001.

[16] T. El Gamal. A public key cryptosystem and a sig-
nature scheme based on discrete logarithms. IEEE
Transactions on Information Theory, 31:469–472,
1985.

[17] D. P. Jablon. Research papers on strong password
authentication, 2002. URL:
www.integritysciences.com/links.html.

[18] M. Jakobsson and A. Juels. Mix and match:
Secure function evaluation via ciphertexts. In
T. Okamoto, editor, ASIACRYPT 2000, pages 162–
177. Springer-Verlag, 2000. LNCS no. 1976.

[19] M. Jakobsson and M. Yung. Proving without
knowing: On oblivious, agnostic, and blindfolded
provers. In CRYPTO ’96, pages 186–200, 1996.
LNCS no. 1109.

[20] A. Juels. Targeted advertising... and privacy too. In
D. Naccache, editor, RSA-CT ’01, pages 408–424,
2001. LNCS no. 2020.

[21] Daniel V. Klein. “Foiling the cracker” – A sur-
vey of, and improvements to, password security.
In Proceedings of the 2nd USENIX Workshop on
Security, pages 5–14, Summer 1990.

[22] P. Mackenzie and M. Reiter. Cryptographic servers
for capture-resilient devices. In S. Jajodia, editor,
9th ACM Conference on Computer and Communi-
cations Security, pages 10–19. ACM Press, 2001.



[23] P. Mackenzie and M. Reiter. Two-party gener-
ation of DSA signatures. In J. Kilian, editor,
CRYPTO 2001, pages 137–154. Springer-Verlag,
2001. LNCS no. 2139.

[24] P. Mackenzie, T. Shrimpton, and M. Jakobsson.
Threshold password-authenticated key exchange.
In M. Yung, editor, CRYPTO 2002, pages 385–400.
Springer-Verlag, 2002. LNCS no. 2442.

[25] A.J. Menezes, P.C. van Oorschot, and S.A. Van-
stone. Handbook of Applied Cryptography. CRC
Press, 1996.


