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1 Introduction

This thesis treats the problem of finding regular models for Elliptic Curves
over general bases. One such model of an Elliptic Curve over a base that is
a DVR with perfect residue field, or more generally a Dedekend domain, is
the Néron model [NÉ]. We compute the reduction types of a Néron model
directly with a Weierstrass equations by using Tate’s Algorithm [TA]. So, the
Néron model is an example of a regular model of an Elliptic curve over a one
dimensional base. In a paper by Miranda [MIR], regular models of elliptic
curves over two dimensional smooth surfaces over a field of characteristic
zero were constructed.

I am interested in combining and extending these results to construct good
models over a relatively general base scheme. We will assume the base scheme
to be Noetherian, n dimensional, regular, integral and separated. I am par-
ticularly interested bases which may be high dimensional and of mixed char-
acteristic.

In my original research, I made the assumption that 1/6 was in all of the
local rings of the base, but here I present a coherent exposition without
this limitation. As expected, new phenomena occur when the base contains
points of residue characteristic two or three. The goal of this paper is to
give criteria for the constructability of a regular model of the elliptic scheme,
algorithmically construct it when possible, and to describe the fibers of the
model.

Let us define what type of models we are interested in constructing.

Definition 1.1 (Flat Resolution)
Let B be a regular Noetherian n - dimensional integral separated scheme.
Let X → B be an elliptic subscheme of P 2(B) defined locally by Weierstrass
Equations. Suppose there exists a blow up B ′ → B defining the base change

X ′ → X
↓ ↓
B′ → B

and a Weierstrass elliptic scheme X ′′ birational to X ′ over B′ with X ′′ reg-

7



ular, minimal, and projective and flat over B ′ Then the scheme X ′′ → B′ is
called a Flat Resolution of X → B.

The notion of a flat resolution is a delicate one. For example, flat resolution
is not functorial with respect to base change.

By an elliptic scheme over B, we mean a B-scheme whose generic fiber is
an elliptic curve. See section 8 for the precise definition of this. We will
define the notion of a pre-settled and settled elliptic scheme in Sections 10.8
and 12.4, and a J morphism in section 15. We provide criteria for an elliptic
scheme to have a flat resolution. In particular in Section 16 We will prove

Theorem 1.2 (Settled Implies Flat Resolution)
Let B be a regular noetherian n-dimensional integral separated scheme, Let
X → B be an elliptic subscheme of P 2(B) defined locally by Weierstrass
Equations. Suppose the discriminant divisor has normal crossings and that
X is pre-settled and settled over B. Then X → B admits a flat resolution
X ′′ → B′.

If we assume that the base B has no points of residue characteristic 2 or
3, the J morphism will be sufficient for the elliptic scheme to have a flat
resolution.

Theorem 1.3 (J Morphism Implies Flat Resolution)
Let B be a regular Noetherian n-dimensional integral separated scheme, Let
X → B be an elliptic subscheme of P 2(B) defined locally by Weierstrass
Equations. Suppose the discriminant divisor has normal crossings, and there
exists a J morphism

J : B → P 1(B)

extending the j invariant for non-singular elliptic curves. Then X → B
admits a flat resolution X ′′ → B′.

This simple criteria for the existence of flat resolution over bases with no
points of characteristic 2 or 3, leads me to conjecture the existence of flat

8



resolution in general. Furthermore, through computer simulations that I have
run, I have some evidence that it is always possible to reduce to a settled
elliptic scheme.

This thesis actually shows much more than theorems 1.2 and 1.3. In the
construction of the flat resolution we also obtain a precise description of the
fibers of the morphism X ′′ → B. The results of this finer analysis appear in
section 6 and 16.

In particular, we describe geometrically the fibers over all closed points of B ′.
We will define a discriminant subscheme of the base B in Section 8. The fibers
over closed points not in this subscheme are elliptic curves. The fibers of X ′′

over smooth points of the reduced discriminant locus of characteristic not
equal to two or three are the special fibers on Kodaira’s list of reduction types
[KOD], and the fibers above points belonging to two or more components of
the reduced discriminant locus are called collisions, (defined in section 10),
and will be described geometrically.

Fibers over smooth points of the reduced discriminant locus of residue char-
acteristic 2 and 3 may be new fiber types not on Kodaira’s list. These new
fiber types will be described in section 6. These new types as well as the
standard ones may also collide if the reduced discriminant locus has multiple
components. These collision fibers are also computed in section 16.

The construction of the regular model is sufficiently algorithmic to allow all
fibers to be computed by using the extension of Tate’s Algorithm and by
consulting Chart 310 in section 17 to compute the collision fiber types.

2 Weierstrass Equations

If we were fortunate enough to have 1/6 in the local rings of B, we could
reduce our Weierstrass equations to a simpler form. In the case that the
local ring does not have residue char 2, we can still complete the square and
eliminate a1 and a3 to obtain

y2 = x3 + a2x
2 + a4x+ a6. (1)
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But when the local ring does have residue char 2 we must deal with the more
general

y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6. (2)

We are going to start our analysis when the base is a DVR, but later we will
consider Weierstrass equations over higher dimensional local rings.

Explicitly we will study subschemes of P 2(B) given by

Spec(R[x, y]/(f)) (3)

where B = Spec(R) is an affine base and f is the polynomial defined by
equation 2.

3 A New Tate’s Algorithm

3.1 Motivation

We will need a new Tate’s Algorithm in order to pay special attention to
translations and extraction of square and cube roots in the residue field.

Given a simplified form of the Weierstrass equation

y2 = x3 + a4x+ a6. (4)

Tate’s algorithm easy to implement because no series of translations are
needed. In general Tate’s Algorithm modifies a Weierstrass equation via
translations at several steps.

Definition 3.1 (R translation)
Let u, r, s, t be elements of the DVR R. An R translation of a Weierstrass
equation is given by

x = u2x′ + r (5)

y = u3y′ + u2sx′ + t (6)
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The values of u, r, s, t are specified in Tate’s Algorithm, and require a square
or cube root in the residue field [TA].

In this paper we are not able to assume that the residue field κ is perfect,
and some of these translations may not be possible. In particular, if κ is not
perfect an irreducible polynomial in κ[x] may have double or triple roots. In
this case the roots only exist in a nonseparable extension of the residue field.

Since we are unwilling to perform a finite base extension, we must treat these
cases as part of the algorithm. The first step of the analysis is to construct
a Tate’s algorithm in cases where the residue field may not be perfect.

3.2 Elements of the Algorithm

We begin with a Weierstrass equation over a DVR, and would like to produce
a regular proper minimal model for it. If the residue characteristic is not 2
or 3, we may use the original Tate’s algorithm. Here we treat the cases of
characteristic 2 and 3, and also carefully review the other cases remarking
that at no step in the argument need we divide by 2 or 3.

The reason to avoid this division is that DVRs of residue characteristic 0
also arise as localizations of local rings of residue characteristic 2 or 3. When
working with higher dimensional local rings O we will need to lift elements
from localizations of O back up to O. Since none of the steps of the extended
Tate’s algorithm will require a division by 2 or 3, the fact that 1

6
may not be

in O presents no problem.

The essence of Tate’s algorithm, in all residue characteristics, is to examine
the valuations of the ai’s, and to perform translations on x and y to produce
new ai’s of a special form. This form uniquely identifies the reduction type
of the regular model.

The translations will be explicitly defined in sections 4 and 5, but in short
they just translate the singular point on the special fiber to (0,0), and sec-
ondly assure that any multiple roots of the following polynomials are trans-
lated to zero.

Y 2 + a1XY − a2X
2 (7)
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Y 2 +
a3

π
Y −

a6

π2
(8)

X3 +
a2

π
X2 +

a4

π2
X +

a6

π3
(9)

Y 2 +
a3

π2
Y −

a6

π4
(10)

There are other polynomials to consider in the In , I∗n, Kn, and Tn families
that we will later define.

3.3 Method of Proof

The proof of the extension to Tate’s algorithm will be divided into cases
depending on the characteristic of the residue field. The three cases will be:
characteristic 2, characteristic 3, all other characteristics.

For each case I will define Types of the Weierstrass equation depending on
the valuations of the ai and other criteria also depending on the ai. These
types are defined in section 4, and will be summarized in various charts and
subcharts. Not every Weierstrass equation will have a type, but in section
5 we will prove that every Weierstrass equations can be translated to one
of these desired special forms. In section 6 we will use that special form to
produce the regular projective minimal model of the elliptic curve. This will
be done by a series of blow ups and then checking regularity.

The use of charts and chart types is just a convenient method of organizing
the data contained in the Weierstrass coefficients. The blow-ups actually used
to construct the model could actually be defined in a translation independent
way.
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4 The Summary Charts

In the Néron model of an elliptic curve the special fiber is unique and is
called the reduction type of the elliptic curve [NÉ]. In this section we take
an alternate approach and define a reduction type of a Weierstrass equation
by imposing conditions on the ai. We do this separately for the three cases,
depending on if the residue characteristic is 2, 3, or 6= 2, 3. We could say
that Type is a function of the ai as follows

(a1, a2, a3, a4, a6)εR
5 → {Types}. (11)

Since not every Weierstrass equation meets the conditions for one of the
reduction types, we must include ”None” in the range of the function.

We can define this type function by describing the inverse image of each type.
That is, we make requirements on the ai for each type. These requirements
involve the valuations v(ai), v(d), and the number of distinct roots of certain
auxiliary polynomials with coefficients determined by the ai.

Because the function is mostly determined by the valuations of ai, and d, we
will summarize the types’ definitions by using a series of charts depending
on the characteristic of the residue field. There will also be sub-charts which
define the members of a family of reduction types. For example, such a sub
chart tells us which n a reduction type In has.

As mentioned, a Weierstrass equation may not meet the conditions for one
of the reduction types, and in this case we say that the type is ”None”.
If the 5-tuple a1, a2, a3, a4, a6 does have a bona-fide type, the Weierstrass
equation will be said to be in chart form. Because the types belonging to a
family of reduction types also require a subchart to define them, there is a
two step definition for these types. If the 5-tuple a1, a2, a3, a4, a6 meets the
requirements to be in one of the families of reduction types defined below,
but may not necessarily have a type, it will be said to be in pre-chart form.

Later, in section 5 we will see that every Weierstrass equation can be trans-
lated into and chart form. We make this precise with a definition.

Definition 4.1 (Chart Form)
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Let R be an arbitrary DVR with residue field κ. Let f be a Weierstrass
equation defining an elliptic scheme over R.

If char(κ) = 2 the equation f is In Pre-Chart Form if the valuations v(ai),
v(bi), v(d), and polynomial conditions meet the requirements of one of the
types or families of types described with Chart 4.2.

The equation f is In Chart Form if it is in pre-chart form and either Chart
4.2 does not define a family of reduction types, or if Chart 4.2 does define
a family of reduction types and furthermore the valuations v(ai), v(bi), v(d),
and polynomial conditions meet the requirements of one of the sub-charts
Chart 4.3, Chart 4.4 or, Chart 4.5.

If char(κ) = 3 the equation f is In Pre-Chart Form if the valuations v(ai),
v(bi), v(d), and polynomial conditions meet the requirements of one of the
types or families of types described with Chart 4.9.

The equation f is In Chart Form if it is in pre-chart form and either Chart
4.9 does not define a family of reduction types, or if Chart 4.9 does define
a family of reduction types and furthermore the valuations v(ai), v(bi), v(d),
and polynomial conditions meet the requirements of one of the sub-charts
Chart 4.7, or Chart 4.8.

If char(κ) 6= 2, 3 the equation f is In Pre-Chart Form if the valuations v(ai),
v(bi), v(d), and polynomial conditions meet the requirements of one of the
types or families of types described with Chart 4.6.

The equation f is In Chart Form if it is in pre-chart form and either Chart
4.6 does not define a family of reduction types, or if Chart 4.6 does define
a family of reduction types and furthermore the valuations v(ai), v(bi), v(d),
and polynomial conditions meet the requirements of one of the sub-charts
Chart 4.7 or Chart 4.8.

4.1 Chart Notations

Throughout this section the DVR R will have uniformizer π , and residue
field κ.

14



As mentioned above we will define types by imposing conditions on the ai.
The charts provide most of these conditions.

An integer N under the column ”Type A” and in the row ”v(ai)” means one
condition for ”Type A” is that v(ai) = N .

A symbol N+ under the column ”Type A” and in the row ”v(ai)” means
one condition for ”Type A” is that v(ai) ≥ N .

A symbol Nns under the column ”Type A” and in the row ”v(ai)” means
one condition for ”Type A” is that v(ai) = N , and that ai

πN is not a square
in κ.

A symbol Nnq under the column ”Type A” and in the row ”v(ai)” means
one condition for ”Type A” is that v(ai) = N , and that ai

πN is not a cube in
κ.

A blank space in a chart indicates that there is no condition to be met.
Following the chart are other conditions that the ai must satisfy to be a
given type. These usually involve the number of roots of a polynomial in
κ[X] or κ[Y ].

4.2 Char 2 Residue Field

Suppose the residue characteristic of κ is 2. Here we define the reduction
types in terms of the valuations of the ai, d, and other polynomial conditions
on the ai. Note that the families In , I∗n, or Kn have sub charts. A Weierstrass
equation f is in chart form if it meets all of the criteria of one of these types
defined here.

For example, f is of type I0 if v(d) = 0.

We define f as one of the types in the In family if v(a1) = 0, v(a2) ≥ 0,
v(a3) ≥ 1, v(a4) ≥ 1, and v(a6) ≥ 1. We consult the subchart Chart 4.3 to
determine exactly which type it is.

We define f to be of type X1 if v(a1) ≥ 1, v(a2) ≥ 0, v(a3) ≥ 1, v(a4) = 0,
v(a6) ≥ 0, and a4 is not a square in κ.
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The other types are defined in a similar fashion using the following chart.

Type I0 In X1 Y 1 Kn II III IV Y 2 I∗0 X2 I∗n IV ∗ Y 3 III∗ II∗ o/w

v(a1) 0+ 0 1+ 1+ 1+ 1+ 1+ 1+ 1+ 1+ 1+ 1+ 1+ 1+ 1+ 1+ 1+
v(a2) 0+ 0+ 0+ 0+ 0ns 1+ 1+ 1+ 1+ 1+ 1+ 1 2+ 2+ 2+ 2+ 2+
v(a3) 0+ 1+ 1+ 1+ 1+ 1+ 1+ 1 2+ 2+ 2+ 2+ 2 3+ 3+ 3+ 3+
v(a4) 0+ 1+ 0ns 1+ 1+ 1+ 1 2+ 2+ 2+ 2ns 3+ 3+ 3+ 3 4+ 4+
v(a6) 0+ 1+ 0+ 0ns 1+ 1 2+ 2+ 2ns 3+ 3+ 4+ 4+ 4ns 5+ 5 6+
v(d) 0 4 8 12+

(12)

An integer n with ’ns’ for ai means ai

πn is not a square in κ.

For type I∗0 , the following polynomial in κ[X]

X3 +
a2

π
X2 +

a4

π2
X +

a6

π3
. (13)

must have distinct roots in some extension of κ , where π is a uniformizer in
the DVR, and the coefficients of the polynomial are considered as elements
of κ.

For type X2, the following polynomial in κ[X]

X3 +
a2

π
X2 +

a4

π2
X +

a6

π3
. (14)

must have one rational root, and one double root not defined over κ, where
π is a uniformizer in the DVR, and the coefficients of the polynomial are
considered as elements of κ. Translating the single rational root to 0, gives
us a form with v(a2) ≥ 2 and v(a6) ≥ 4.

4.3 Char 2 In Detail

This is the subchart for the family In. When defining some of these types,
we reference b8. This is just the standard polynomial in the ai.

b8 = a6
1a6 + 4a2a6 − a1a3a4 + a2a

2
3 − a

2
4 (15)
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For example, f to be of type I2 if v(a1) = 0, v(a2) ≥ 0, v(a3) ≥ 1, v(a4) ≥ 1,
v(a6) ≥ 2, v(b8) = 0, and v(d) = 0.

Type I1 I2 I3 I4 I5 ...

v(a1) 0 0 0 0 0 ...
v(a2) 0+ 0+ 0+ 0+ 0+ ...
v(a3) 1+ 1+ 2+ 2+ 2+ ...
v(a4) 1+ 1+ 2+ 2+ 2+ ...
v(a6) 1 2+ 3 4+ 5 ...
v(d) 1 2 3 4 5 ...
v(b8) 1 2 3 4 5 ...

(16)

4.4 Char 2 Kn Detail

This is the subchart for the family Kn.

Type K1 K2 K ′

2 K3 K4 K ′

4 K5 K6 K6 ...

v(a1) 1+ 1+ 1+ 1+ 1+ 1+ 1+ 1+ 1+ ...
v(a2) 0ns 0ns 0ns 0ns 0ns 0ns 0ns 0ns 0ns ...
v(a3) 1+ 1+ 2+ 2+ 2+ 2+ 3+ 3+ 4+ ...
v(a4) 1+ 1+ 2+ 2+ 2+ 2+ 3+ 3+ 4+ ...
v(a6) 1 2+ 2nt 3 4+ 4nt 5 6+ 6nt ...
v(b8) 2 4 6 ...

(17)

For types K ′

n we also demand that the quadric

y2 = a2x
2 +

a6

πn
(18)

has no rational points in κ . This quadric is then a non reduced double line.
The ’nt’ stands for non translatable.
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4.5 Char 2 I∗
n

Detail

This is the subchart for the family I∗n.

Type I∗1 T1 I∗2 T2 I∗3 T3 I∗4 T4 ...

v(a1) 1+ 1+ 1+ 1+ 1+ 1+ 1+ 1+ ...
v(a2) 1 1 1 1 1 1 1 1 ...
v(a3) 2 3+ 3+ 3+ 3 4+ 4+ 4+ ...
v(a4) 3+ 3+ 3 4+ 4+ 4+ 4 5+ ...
v(a6) 4+ 4ns 5+ 5ns 6+ 6ns 7+ 7ns ...

(19)

For types Tn with n odd we demand that the a6

πn+3 is not square in κ.

For types Tn with n even we demand that the a6

a2πn+2 is not square in κ.

4.6 Char 6= 2, 3 General Form

Suppose the residue characteristic of κ is not 2 or 3. Here we define the
reduction types in terms of the valuations of the ai, d, and other polynomial
conditions. Note the families In , I∗n, or Kn have sub charts. A Weierstrass
equation is in form if it meets the criteria of one of these types here.

In this case we will assume that the residue characteristic is not 2 or 3, but
we will not divide by 2 to complete the square. This chart does not give
us any new types, but it shows just the translations that are demanded by
Tate’s algorithm .

Type I0 In II III IV I∗0 I∗n IV ∗ III∗ II∗ o/w

v(a1) 0+ 1+ 1+ 1+ 1+ 1+ 1+ 1+ 1+ 1+
v(a2) 0+ 1+ 1+ 1+ 1+ 1 2+ 2+ 2+ 2+
v(a3) 1+ 1+ 1+ 1+ 2+ 2+ 2+ 3+ 3+ 3+
v(a4) 1+ 1+ 1 = 2+ 2+ 3+ 3+ 3 4+ 4+
v(a6) 1+ 1 = 2+ 2+ 3+ 4+ 4+ 5+ 5 = 6+
v(d) 0 n 2 3 4 6 6 + n 8 9 10 12+

(20)

For type I∗n, we must also require a2
1 + 4a2 to be a unit.
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For type IV we require the polynomial

X2 +
a3

π
X +

a6

π2
(21)

to have distinct roots in some extension of κ.

For type IV ∗ we require the polynomial

X2 +
a3

π2
X +

a6

π4
(22)

to have distinct roots in some extension of κ.

For type I∗0 , we must also require the polynomial

X3 +
a2

π
X2 +

a4

π2
X +

a6

π3
(23)

to have distinct roots in some extension of κ.

4.7 Char 6= 2, 3 In General Form Detail

This subchart for the family I∗n would be the same chart as the Characteristic
2 In Detail Chart 4.3 , except we allow v(a1) ≥ 0 and demand that a2

1 + 4a2

is a unit.

This analysis is also valid for all characteristics 6= 2, even for non perfect
residue fields.

4.8 Char 6= 2, 3 I∗
n

general form detail

This is the subchart for the family I∗n. This analysis is also valid for all
characteristics 6= 2, even for non perfect residue fields.
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Type I∗1 I∗2 I∗3 I∗4 I∗5 ...

v(a1) 1+ 1+ 1+ 1+ 1+ ...
v(a2) 1 1 1 1 1 ...
v(a3) 2+ 3+ 3+ 4+ 4+ ...
v(a4) 3+ 3+ 4+ 4+ 5+ ...
v(a6) 4+ 5+ 6+ 7+ 8+ ...
v(d) 7 8 9 10 11 ...

(24)

For type I∗n with n odd we require the polynomial

X2 +
a3

π
n+3

2

X +
a6

πn+3
(25)

to have distinct roots in some extension of κ

For type I∗n with n even we require the polynomial

a2

π
X2 +

a4

π
n+4

2

X +
a6

πn+3
(26)

to have distinct roots in some extension of κ

4.9 Char 3 Residue Field

In this case we will complete the square and assume a1 = a3 = 0. The
reason we allow ourselves to divide by two here is that if a DVR obtained by
localizing a local ring O has residue characteristic 3, all other localizations
of O must have residue characteristic 0 or 3.

Type I0 In Z1 II III IV I∗0 Z2 I∗n IV ∗ III∗ II∗ o/w

v(a2) 0 1+ 1+ 1+ 1+ 1+ 2+ 1+ 2+ 2+ 2+ 2+
v(a4) 1+ 1+ 1+ 1 2+ 2+ 3+ 3+ 3+ 3 4+ 4+
v(a6) 1+ 0nq 1 2+ 2 3+ 3nq 4+ 4 5+ 5 6+
v(d) 0 n 3 6 6 + n 9 12+

(27)

An integer n with ’nq’ for a6 means a6

πn is not a square in κ . For type I∗0 , we
must also require the polynomial

X3 +
a2

π
X2 +

a4

π2
X +

a6

π3
(28)
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to have distinct roots in some extension of κ .

For details on In and I∗n, see charts 4.3, and 4.8 with a1 = a3 = 0.

This concludes the definition of the reduction types of a Weierstrass equation
and the criteria for a Weierstrass equation to be in chart form or pre-chart
form.
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5 Proof of the Charts

In this section we will prove that any Weierstrass equation over a DVR can
be translated to a form specified on one of the charts above.

Proposition 5.1 (Translate to Chart Form)
Let R be an arbitrary DVR with residue field κ. Let f be a Weierstrass
equation defining an elliptic scheme over R. Then there exist R translations
of x and y such that the translated Weierstrass equation f ′ is in chart form.

We continue to use the notation R for the DVR, π for the uniformizer, and
κ for the residue field. When working with the valuations of the ai, we will
treat them as elements in R, but we will also use the same notation for their
images in the residue field.

5.1 Char 2 Residue Field

Given any Weierstrass equation with coefficients in the DVR R, I will show
that there exist R translations x 7→ x+ α and y 7→ y+ βx+ γ such that the
coefficients ai satisfy the conditions of one of the types on Chart 4.2. It is
useful to refer to that chart while reading this section.

Write κ for the residue field, and π for a uniformizer in the DVR. We use
the fact that a hypersurface defined by f(x, y) = 0 with a singularity in the
special fiber π = 0 must have f = df

dx
= df

dy
= 0 (mod π). For reference, our

Weierstrass equation f is given by

y2 + a1xy + a3y − (x3 + a2x
2 + a4x+ a6) = 0 (29)

Suppose v(d) = 0. Then we have type I0.

Suppose instead v(d) > 0 and v(a1) = 0. Translate via x = x′ − a3/a1 and
compute new ai. Then v(a3) > 0. The singularity at (x, y) on the special
fiber satisfies df

dy
= 2y+ a1x+ a3 = 0 (mod π). So x=0 at the singular point.
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Now translate via y = y′ + a4/a1, and compute new ai. Now v(a4) > 0. The
singularity at (x, y) on the special fiber satisfies df

dx
= a1y + a4=0 (mod π).

So y=0 at the singular point. Finally f = 0(mod π) implies that v(a6) > 0.
So in this case v(a1) = 0, v(a3) > 0, v(a4) > 0, v(a6) > 0. We are in one of
the cases In. We consult a following section 5.2] to determine which type it
is.

Now suppose v(d) > 0 and v(a1) > 0. Then df
dy

= 0 (mod π) implies 2y +

a1x+ a3 = a3 = 0(mod π). So v(a3) > 0.

Assume additionally that a4 is not a square in κ. Then we are in the case
X1.

Otherwise assume that a4 is a square in κ. Now translate via x = x′ + α
where α2 = a4(mod π) and compute new ai. Now v(a4) > 0. If a6 is not a
square in the residue field we are in the case Y 1.

Otherwise assume additionally that a6 is a square in κ. Now translate via
y = y′ + α where α2 = a6 (mod π) and compute new ai. Now v(a6) > 0.

Assume that a2 is not a square in the residue field. Then we are in one of
the cases Kn, or K ′

n. We consult a following section 5.3 to determine which
type it is.

Otherwise assume additionally that a2 is a square in κ. Now translate via
y = y′ + βx where β2 = a2 (mod π) and compute new ai. Now v(a2) > 0.

So far, the cumulative translations have given v(a1) ≥ 1, v(a2) ≥ 1, v(a3) ≥
1, v(a4) ≥ 1, v(a6) ≥ 1.

Suppose v(a6) = 1. Then we are in the case II.

Suppose instead v(a6) ≥ 2, and v(a4) = 1. Then we are in the case III.

Suppose instead v(a4) ≥ 2, and v(a3) = 1. Then we are in the case IV .

Suppose instead v(a3) ≥ 2, and a6

π2 is not a square in the residue field. Then
we are in the case Y 2.

Otherwise assume additionally that a6

π2 is a square in κ. Now translate via
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y = y′ + α where α2 = a6

π2 (mod π) and compute new ai. Now v(a6) ≥ 3.

So far, the cumulative translations have given v(a1) ≥ 1, v(a2) ≥ 1, v(a3) ≥
2, v(a4) ≥ 3, v(a6) ≥ 3.

So by reducing a2

π
, a4

π2 , and a6

π3 mod π, we may form the polynomial in κ[X]:

F (X) = X3 +
a2

π
X2 +

a4

π2
X +

a6

π3
. (30)

Assume additionally that F (X) has distinct roots. Then we are in the case
I∗0 . Otherwise F (X) has multiple roots. At such a root F (X) = dF

dx
= 0.

Thus one way to check if F has a multiple root is to solve F (X) = dF
dx

= 0.
So there is a multiple root if and only if v(a2a4 − a6) > 3.

Suppose instead that F (X) has a double root and a single root, and that the
double root is not rational over κ. Then F (X) factors as (X − α)(X 2 − β)
with β not a square in κ. This implies v(a4) = 2, and β = a4

π2 is not a square
in κ. Then we are in the case X2.

Optionally, translate the other root to 0, to force v(a2) ≥ 2, and v(a6) ≥ 4.

Suppose instead that F (X) has a double root and a single root, and that
the double root is rational over κ. Then F (X) factors as (X − α)(X − β)2.
Now translate via x = x′ + βπ, and compute new ai. The new F (X) factors
as (X − α′)X2, with α′ 6= 0. Now v(a4) ≥ 3 and v(a6) ≥ 4, and v(a2) = 1.
We are in one of the cases I∗n, or Tn. We consult a following section 5.4 to
determine which type it is.

Suppose instead that F (X) has a triple root. A triple root of a cubic in
characteristic 2 must always be rational, so F (X) factors as (X − α)3 with
αεκ. Now translate via x = x′ + απ, and compute new ai. The new F (X)
factors as X3, so v(a4) ≥ 3 and v(a6) ≥ 4, and v(a2) ≥ 2.

Suppose additionally v(a3) = 2. Then we are in the case IV ∗. Otherwise
v(a3) ≥ 3

Suppose instead v(a3) ≥ 3, and a6

π4 is not a square in the residue field. Then
we are in the case Y 2.
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Suppose instead a6

π4 is a square in κ. Now translate via y = y′ + α where
α2 = a6

π4 (mod π) and compute new ai. Now v(a6) ≥ 5.

So far, the cumulative translations have given v(a1) ≥ 1, v(a2) ≥ 2, v(a3) ≥
3, v(a4) ≥ 3, v(a6) ≥ 5.

Suppose v(a4) = 3. Then we are in the case III∗. Otherwise v(a4) ≥ 4.

Suppose instead v(a4) ≥ 4, and v(a6) = 5. Then we are in the case II∗.
Otherwise v(a6) ≥ 6.

Suppose instead v(a6) ≥ 6. Then we have v(a1) ≥ 1, v(a2) ≥ 2, v(a3) ≥
3, v(a4) ≥ 4, and v(a6) ≥ 6. We then replace the Weierstrass equation with
a more minimal one via the transformation a′i = ai

πi .

The Weierstrass equation has been transformed to one of the forms on the
chart, and we are done unless we had a type in one of the cases In, Kn, K

′

n,
I∗n, or Tn. In any of these cases we consult one of the following sections to
determine exactly which type we have. There may be more translations in
these subcases.

5.2 Char 2 In Detail

This section continues the analysis of the previous section 5.1 in the cases
where we have a Weierstrass equation with

v(a1) = 0, v(a3) > 0, v(a4) > 0, v(a6) > 0. (31)

We show here that in all of these cases we have a type In for some n. In
other words, there exist R translations of x and y such that the coefficients
ai satisfy the conditions of one of the types on Chart 4.3.

Suppose v(a6) = 1. Then we have type I1.

Suppose instead v(a6) ≥ 2. Consider the quadratic

y2 + a1xy +
a3

π
y = a2x

2 +
a4

π
x+

a6

π2
(32)
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Let b8 be defined as in 15. A routine check using the quadratic formula shows
that the quadric is degenerate if and only if v(b8) > 2.

Suppose v(b8) = 2 then we are in case I2.

Suppose instead v(b8) > 2. Then the quadratic is degenerate. Since b2 =
a2

1 + 4a2 is a unit, the quadratic consist of two distinct intersecting lines.

The singular point where the two lines intersect is a rational point. We see
this by computing df

dx
(mod π) and df

dy
(mod π), we see that modulo π it must

be at
a1y =

a4

π
(33)

a1x = −
a3

π
(34)

Since a1 is a unit, we can solve for x and y.

Since the singular point is rational, translate it to (0,0) via the translations
y = y′ − a4

πa1
and x = x′ + a3

πa1
, and compute new ai

Now v(a3) > 1, v(a4) > 1, v(a2) > 2.

Suppose v(a6) = 3. Then we are in case I3.

Suppose instead v(a6) ≥ 4. Then we form an analogous quadric and check to
see if it is degenerate or not. In this process we will be looking successively at
the valuations a6, b8, and translating the singularities of the general quadratic

y2 + a1xy +
a3

π
n
2

y = a2x
2 +

a4

π
n
2

x+
a6

πn
(35)

to (0,0).

So all Weierstrass equations with v(a1) = 0, v(a3) > 0, v(a4) > 0, v(a6) > 0
can be translated to be one of the In types on the chart.
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5.3 Char 2 Kn Detail

This section continues the analysis of the previous section 5.1 in the cases
where we have a Weierstrass equation with v(a1) > 0, v(a2) = 0, v(a3) ≥
1, v(a4) ≥ 1, v(a6) ≥ 1, and a2 is not a square (mod π). We show here that
in all of these cases we have a type Kn for some n, or a type K ′

n for some
even n. In other words, there exist R translations of x and y such that the
coefficients ai satisfy the conditions of one of the types on Chart 4.4.

Suppose v(a6) = 1. Then we have a type K1.

Suppose instead v(a6) > 1.

Consider the quadratic

y2 + a1xy +
a3

π
y = a2x

2 +
a4

π
x+

a6

π2
(36)

As above we use b8 as defined as in 15. Again a routine check using the
quadratic formula shows that the quadric is degenerate if and only if v(b8) >
2. We remark that b8 = a2a

2
3 − a

2
4 mod π3.

Suppose further that v(b8) = 2. Then we have a type K2.

Suppose instead that v(b8) > 2. Then a2a
2
3 = a2

4 mod π3. Since a2 in not a
square (mod π), we have v(a3) ≥ 2 and v(a4) ≥ 2. Then the quadratic is

y2 = a2x
2 +

a6

π2
(mod κ). (37)

Suppose further that this quadratic has no κ rational points. Then we have
type K ′

2.

Suppose instead that (x0, y0) is a κ rational point. Then translate this point
it to (0,0) via the translations y = y′ − y′0 and x = x′ − x′0 where x′0 and
y′0 are liftings of x0 and y0 to the DVR R. Now compute new ai. We see in
particular that v(a6) ≥ 3.

Suppose now v(a6) = 3. Then we have a type K3.

Suppose instead v(a6) > 3. Then we form an analogous quadric and check to
see if it is degenerate or not. In this process we will be looking successively
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at the valuations a6, b8, and checking whether or not

y2 = a2x
2 +

a6

πn
(38)

has a rational point.

So we conclude that all Weierstrass equations with v(a1) > 0, v(a2) = 0,
v(a3) ≥ 1, v(a4) ≥ 1, v(a6) ≥ 1, and a2 is not a square (mod π), can be
translated to be one of the Kn or K ′

n types on the chart.

5.4 Char 2 I∗n Detail

This section continues the analysis of the previous section 5.1 in the cases
where we have a Weierstrass equation with v(a1) > 0, v(a2) = 1, v(a3) ≥
2, v(a4) ≥ 3, v(a6) ≥ 4. We show here that in all of these cases we have a
type I∗n for some n, or a type Tn for some n. In other words, there exist R
translations of x and y such that the coefficients ai satisfy the conditions of
one of the types on Chart 4.5.

Suppose v(a3) = 2. Then we have a type I∗1 .

Suppose instead that v(a3) ≥ 3. Suppose additionally that a6

π4 is not square
(mod π). Then we have type T1.

Suppose instead that a6

π4 = α2 (mod π). Then translate via y = y′ +π2α, and
compute new ai. Then v(a6) ≥ 5.

Suppose now that v(a4) = 3. Then we have a type I∗2 .

Suppose instead that v(a4) ≥ 4. Suppose additionally that a6

a2π4 is not square
(mod π). Then we have type T2.

Suppose instead that a6

a2π4 = α2 (mod π). Then translate via x = x′ − π2α,
and compute new ai. Then v(a6) ≥ 6.

Suppose now that v(a3) = 3. Then we have a type I∗3 .

Suppose instead that v(a3) ≥ 4. We continue this process by looking succes-
sively at a3, a6, a4, and a6

a2
.
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So we conclude that all Weierstrass equations with v(a1) > 0, v(a2) = 1,
v(a3) ≥ 2, v(a4) ≥ 3, v(a6) ≥ 4 can be translated to be one of the I∗n or Ti

types on the chart.

5.5 Char 6= 2, 3 General Form

Given any Weierstrass equation with coefficients in the DVR R, I will show
that there exist R translations x 7→ x+ α and y 7→ y+ βx+ γ such that the
coefficients ai satisfy the conditions of one of the types on Chart 4.6.

I remark that the content of this section is contained in Tate’s original ex-
position, except that he did not make a chart or the valuations of the ai.
Remember that since char(κ) 6= 2, 3, we could reduce our Weierstrass equa-
tion to the simpler form

y2 = x3 + a4x+ a6. (39)

But we do not do this. A chart relating the valuations of the ai to the
reduction type for this simpler Weierstrass equation is available as an exercise
in [SIL 1]. Although the proof in this section is similar to the characteristic
2 case above, we spell out the details.

Write κ for the residue field, and π for a uniformizer in the DVR. We use
the fact that a hypersurface defined by f(x, y) = 0 with a singularity in the
special fiber π = 0 must have f = df

dx
= df

dy
= 0 (mod π). For reference, our

Weierstrass equation f is given by

y2 + a1xy + a3y − (x3 + a2x
2 + a4x+ a6) = 0 (40)

Suppose v(d) = 0. Then we have type I0.

Suppose instead v(d) > 0. So the Weierstrass equation defines a singular
curve over κ.

In order to show that the singular point is κ rational, temporarily complete
the square and consider the simpler equation y′2 = f(x) mod π. The sin-
gularity on this curve over κ must have coordinates (x0, 0) where x0 is a
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multiple root of f(x). Since κ does not have characteristic 2 or 3, the mul-
tiple root of the cubic polynomial f(x) must lie in κ. Since completing the
square was just a κ rational translation of y, we see that the singular point
must be given by x = α and y = β for α, βεκ.

Lift α and β to the DVR R, and make a translation via x = x′ + α and
y = y′ + β, and compute new ai. Now v(a3) ≥ 1,v(a4) ≥ 1, and v(a6) ≥ 1.

Suppose further that b2 = a2
1 + 4a2 is a unit. We are in one of the cases In.

We consult a following section 5.6 to determine which type it is.

Suppose instead that v(b2) > 0. This means that the polynomial

Y 2 + a1XY − a2X
2 (41)

has a double root mod π. Since char(κ) 6= 2, the root must be in κ. Let α
be a lifting of the root to R. Now translate via y ′ = y + αx, and compute
new ai. Now v(a1) ≥ 1, and v(a2) ≥ 1.

Suppose further that v(a6) = 1. Then we are in the case II.

Suppose instead v(a6) ≥ 2, and v(a4) = 1. Then we are in the case III.

Suppose instead v(a4) ≥ 2, and that the polynomial

Y 2 +
a3

π
Y −

a6

π2
(42)

has distinct roots mod π. Then we are in the case IV .

Otherwise suppose the polynomial has a double root mod π. Since char(κ) 6=
2, the root must be in κ. Let α be a lifting of the root to R. Now translate
via y′ = y − απ, and compute new ai. Now v(a3) ≥ 2, and v(a6) ≥ 3.

Suppose further that the polynomial

X3 +
a2

π
X2 +

a4

π2
X +

a6

π3
(43)

has distinct roots mod π. Then we are in the case I∗0 .

Suppose instead that the polynomial has a double or triple root mod π. Since
char(κ) 6= 2, 3, the root must be in κ. Let α be a lifting of the root to R.
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Now translate via x′ = x − απ, and compute new ai. Now v(a4) ≥ 3, and
v(a6) ≥ 4, since at least two of the three roots have been translated to 0.

Suppose further that v(a2) = 1, or equivalently that the above polynomial
had only a double root. We are in one of the cases I∗n. We consult a following
section 5.7 to determine which type it is.

Suppose instead that v(a2) ≥ 2, and additionally that the polynomial

Y 2 +
a3

π2
Y −

a6

π4
(44)

has distinct roots mod π. Then we are in the case IV ∗. Otherwise suppose
the polynomial has a double root mod π. Since char(κ) 6= 2, the root must
be in κ. Let α be a lifting of the root to R. Now translate via y ′ = y − απ2,
and compute new ai. Now v(a3) ≥ 3, and v(a6) ≥ 5.

Suppose further that v(a4) = 3. Then we are in the case III∗.

Suppose instead v(a4) ≥ 4, and v(a6) = 5. Then we are in the case II∗.

Suppose instead v(a6) ≥ 6. Then we have v(a1) ≥ 1, v(a2) ≥ 2, v(a3) ≥
3, v(a4) ≥ 4, and v(a6) ≥ 6. We then replace the Weierstrass equation with
a more minimal one via the transformation a′i = ai

πi .

The Weierstrass equation has been transformed to one of the forms on the
chart, and we are done unless we had a type in one of the cases In or I∗n.
In these cases we consult one of the following sections to determine exactly
which type we have. There may be more translations in these subcases.

I remark again that this is just a restatement of Tate’s original algorithm,
and we therefore obtain no new fiber types.

5.6 Char 6= 2, 3 In General Form Detail

This section continues the analysis of the previous section 5.5 in the cases
where we have a Weierstrass equation with

v(a1) ≥ 0, v(a2) ≥ 0, v(a3) > 0, v(a4) > 0, v(a6) > 0,
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and b2 = a2
1 + 4a2 is a unit.

We show here that in all of these cases we have a type In for some n. In
other words, there exist R translations of x and y such that the coefficients
ai satisfy the conditions of one of the types on Chart 4.7.

Suppose v(a6) = 1. Then we have type I1.

Suppose instead v(a6) ≥ 2. Consider the quadratic

y2 + a1xy +
a3

π
y = a2x

2 +
a4

π
x+

a6

π2
(45)

Let b8 be defined as in 15. A routine check using the quadratic formula shows
that the quadric is degenerate if and only if v(b8) > 2.

Suppose v(b8) = 2 then we are in case I2, and we can also check that v(d) = 2.

Suppose instead v(b8) > 2. Then the quadratic is degenerate. Since b2 =
a2

1 + 4a2 is a unit, the quadratic consist of two distinct intersecting lines.

The singular point where the two lines intersect is a rational point. We
see this by computing df

dx
(mod π) and df

dy
(mod π), we see it must be at

a1y = 2a2x+ a4

π
(mod π), and 2y + a1x = −a3

π
(mod π).

Given the fact that a2
1 + 4a2 is a unit, it is routine to conclude that the

solution of the above two equations is x = α, y = β for α, βεκ. In fact we
have

b2x = −
a1a3 + 2a4

π
(46)

b2y =
a1a4 − 2a2a3

π
(47)

Now since the singular point is rational, translate it to (0,0) via the transla-
tions y = y′ + α and x = x′ + β, and compute new ai

Now v(a3) > 1, v(a4) > 1, v(a2) > 2. Suppose additionally that v(a6) = 3.
Then we are in case I3.

Suppose instead v(a6) ≥ 4. Then we form an analogous quadric and check to
see if it is degenerate or not. In this process we will be looking successively at
the valuations a6, b8, and translating the singularities of the general quadratic
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y2 + a1xy +
a3

π
n
2

y = a2x
2 +

a4

π
n
2

x+
a6

πn
(48)

to (0,0).

So all Weierstrass equations with v(d) > 0, v(a1) ≥ 0, v(a2) ≥ 0, v(a3) >
0, v(a4) > 0, v(a6) > 0, and v(b2) = 0 can be translated to be one of the In

types on the chart.

5.7 Char 6= 2, 3 I∗
n

General Form Detail

This section continues the analysis of the previous section 5.5 in the cases
where we have a Weierstrass equation with v(a1) > 0, v(a2) = 1, v(a3) ≥
2, v(a4) ≥ 3, v(a6) ≥ 4. We show here that in all of these cases we have a
type I∗n for some n. In other words, there exist R translations of x and y such
that the coefficients ai satisfy the conditions of one of the types on Chart
4.8.

Suppose the quadratic

Y 2 +
a3

π2
Y +

a6

π4
(49)

has distinct roots modulo π. In this case we can compute v(d) = 7, and so
we have a type I∗1 .

Suppose instead that the polynomial has a double root. Since κ does not
have characteristic 2 , the double root of the polynomial must lie in κ. Let α
be a lifting of the double root to the DVR R. Then translate via y = y ′+π2α,
and compute new ai.

Then v(a3) ≥ 3, and v(a6) ≥ 5.

Now suppose now that the quadratic

X2 +
a4

π2a2

X +
a6

π4a2

(50)

has distinct roots modulo π. In this case we can compute v(d) = 8, and so
we have a type I∗2 .
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Suppose instead that the polynomial has a double root. Since κ does not
have characteristic 2 , the double root of the polynomial must lie in κ. Let α
be a lifting of the double root to the DVR R. Then translate via x = x′+π2α,
and compute new ai.

Then v(a4) ≥ 4, and v(a6) ≥ 6.

We continue the process by considering for higher integers k the polynomials
in κ of the form

Y 2 +
a3

πk
Y +

a6

π2k
(51)

and the polynomials in κ of the form

X2 +
a4

πka2

X +
a6

π2ka2

. (52)

Since v(d) is finite, the process eventually terminates. So we conclude that
all Weierstrass equations with v(a1) > 0, v(a2) = 1, v(a3) ≥ 2, v(a4) ≥
3, v(a6) ≥ 4 can be translated to be one of the I∗n types on the chart. In fact
we obtain a type I∗n exactly when v(d) = n+ 3.

5.8 Char 3 Residue Field

In this case where κ has characteristic 3, we are going to complete the square
and assume that our Weierstrass equation is of the form

y2 = f(x) = x3 + a2x
2 + a4x+ a6. (53)

Given any Weierstrass equation of this form with coefficients in the DVR R, I
will show that there exist R translations x 7→ x+α such that the coefficients
ai satisfy the conditions of one of the types on Chart 4.9.

Suppose v(d) = 0. Then we have type I0.

Suppose instead v(d) > 0. Then f(x) has a multiple root.

Suppose f(x) has a triple root α which is not rational over κ. Then α lies in
a degree three non separable extension of κ. So

f(x) = (x− α)3 = x3 + 3αx2 + 3α2x+ α3 (54)
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This means v(a2) ≥ 1, v(a4) ≥ 1, and a6 is a unit but not a cube in the
residue field. In this case we are in the case Z1

Suppose instead that f(x) has a double root and a single root. Since the
characteristic of κ is 3, the double root α must be rational over κ. Translate
via x = x′ + α. Then v(a2) = 0, v(a4) ≥ 1, and v(a6) ≥ 1. We are in one of
the cases In. We consult the same section 5.6 as for characteristic κ 6= 2, 3
to determine which type it is.

Suppose instead that f has a triple rational root α which is in κ. Translate
via x = x′ + α so that v(a2) ≥ 1, v(a4) ≥ 1, and v(a6) ≥ 1.

Suppose additionally that v(a6) = 1. Then we have type II.

Suppose instead that v(a6) > 1 and v(a4) = 1. Then we have type III.

Suppose instead that v(a4) > 1 and v(a6) = 2. Then we have type IV .

Suppose instead that v(a6) ≥ 3, and examine the polynomial

F (X) = X3 +
a2

π
X2 +

a4

π2
X +

a6

π3
. (55)

Suppose F (X) has distinct roots. Then we have type I∗0 . We can also
compute v(d) = 6 in this case.

Suppose instead that F (x) has a triple root α which is not rational over κ.
Then α lies in a degree three non separable extension of κ. So

F (X) = (X − α)3 = X3 + 3αX2 + 3α2X + α3 (56)

This means v(a2) ≥ 2, v(a4) ≥ 3, and v(a6) = 3 but a6

π3 is not a cube in the
residue field. In this case we are in the case Z2.

Suppose instead that F (X) has a double root and a single root. Since the
characteristic of κ is 3, the double root α must be rational over κ. Translate
via x = x′ +απ. Then v(a2) = 1, v(a4) ≥ 3, and v(a6) ≥ 4. We are in one of
the cases I∗n. We consult the same section 5.7 as for characteristic κ 6= 2, 3
to determine which type it is. In that section we see that we obtain a type
I∗n with n = v(d)− 3.
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Suppose instead that F has a triple rational root α which is in κ. Translate
via x = x′ + απ so that v(a2) ≥ 2, v(a4) ≥ 3, and v(a6) ≥ 4.

Suppose additionally that v(a6) = 4. Then we have type II.

Suppose instead that v(a6) > 4 and v(a4) = 3. Then we have type III.

Suppose instead that v(a4) > 3 and v(a6) = 4. Then we have type IV .

Otherwise v(a2) ≥ 2, v(a4) ≥ 4, and v(a6) ≥ 6. Then replace the Weierstrass
equation with a more minimal one via a′i = ai

πi .

The Weierstrass equation has been transformed to one of the forms on the
chart, and we are done unless we had a type in one of the cases In or I∗n.
In these cases we consult either Section 5.6 or Section 5.7 to determine ex-
actly which type we have and to show that the Weierstrass equation can be
translated to be in chart form.
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6 New Special Fibers

In this section we use the charts of the previous section to find the regular
model of the elliptic scheme over the DVR by performing a series of blow
ups. We will prove the following

Theorem 6.1 (Existence of Regular Model)
Let E be an elliptic curve defined by a minimal Weierstrass equation f over
a DVR R with not necessarily perfect residue field κ. Then there exist a flat
regular projective minimal model C → R with generic fiber E.

6.1 Kodaira Types

Suppose the valuations of the ai satisfy the conditions on one of the charts
for one of the standard Kodaira types. Then performing exactly the blowups
suggested in Tate’s algorithm will produce the standard special fiber on Ko-
daira’s list. These types are In, II, III, IV, I

∗

0 , I
∗

n, IV
∗, III∗, II∗. I will not

reproduce the blow ups here.

6.2 Blow ups

Many of the blow ups are the same as those prescribed by Tate’s algorithm.
So be brief, I will specify the ideal such as (x, y, π) that I am blowing up
at, but will not compute all coordinate patches. I will show the coordinate
patch or patches only where new components in the special fiber emerge, or
some order of tangency is shown to exist. I will also start with the affine
subscheme of R[x, y] defined by the Weierstrass equation, instead of using
the projective ring R[X,Y, Z], since there are no singularities at Z = 0. See
section 9.2 for some further discussion of blow ups in general.
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6.3 Checking Regularity

We are trying to resolve the singularities in the total space X, so after each
blow up we will need to check if there are any singularities. First notice
that since we are starting with a generically non singular elliptic curve, any
singularities must lie in the special fiber π = 0. Also, any singular point of
the scheme X must also be a singular point in the fiber π = 0. Of course a
singular point in the fiber need not be a singular point in X; for example the
cusp in the special fiber of the Kodaira type II is a regular point of the whole
space. To check regularity in the total space we compute the dimension of
the vector space m

m2

To check regularity in affine space over a field κ, one can pass to an algebraic
closure of κ, and use the rank of the Jacobian matrix to determine singular-
ities. In the case of a hypersurface f = 0 in κ[x, y], this amounts to finding
points where

f =
df

dx
=
df

dy
= 0 (57)

Given a singular ideal in the ring obtained by passing to the algebraic closure,
we intersect it with the original ring, and check if it is singular.

For example κ[x, y]/(y2 + x3 + t) with κ a field of characteristic 2 and t
not a square in κ has a singularity in the algebraic closure of κ, namely

x = 0, y =
√

(t). The intersection of that ideal with the ring κ[x, y]/(y2 +

x3 + t), is the maximal ideal (x, y2 + t). But m
m2 is only one dimensional since

y2 + x3 + t = y2 + t modulo m2.

We also remark that fields and the polynomials κ[x] over a field κ are lo-
cal rings, and tensor products of regular rings are again regular. Thus, for
example,

κ[x, y]/(x2 + t) = κ[x]/(x2 + t)⊗ κ[y] (58)

is regular when κ a field of characteristic 2 and t not a square in κ.
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6.4 Char 3 Z1

We have the subscheme of R[x, y] defined by

y2 = x3 + a2x
2 + a4x+ a6 (59)

with v(a2) > 0, v(a4) > 0, v(a6) = 0, a6 is not a cube in κ. Computing d
dy

in the special fiber, we find that the singular locus is must be contained in
π = 0, 2y = 0. This it must be supported in the subscheme defined by the
ideal (π, y, x3 + a6). Since a6 is not a cube in κ, the ideal is maximal. Since
the polynomial 59 is not zero mod m2, the vector space m

m2 is two dimensional
and the scheme is already regular.

Geometrically, we pass to the algebraic closure of κ, and there the special
fiber is a cuspidal cubic with the cusp not rational over κ. The cusp lies in
a degree 3 extension of κ.

6.5 Char 3 Z2

We have the subscheme of R[x, y] defined by

y2 = x3 + a2x
2 + a4x+ a6 (60)

with v(a2) > 1, v(a4) > 2, v(a6) = 3, a6

π3 is not a cube in κ. The special fiber
consists of a multiplicity 1 rational curve.

Blow up at the singular point (x, y, π). For the third coordinate patch put
x = x1π and y = y1π. This patch is the affine subscheme of R[x1, y1] defined
by

y2
1 = x3

1π + a2x
2
1 +

a4

π
x1 +

a6

π2
(61)

The special fiber consists of a multiplicity 2 rational curve defined by y1 = 0
This scheme has singularities, all of which are supported in (y1, π)

Blow up at the double line (y1, π). For the second coordinate patch put
y1 = y2π. This patch is the affine subscheme of R[x1, y2] defined by
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y2
2π = x3

1 +
a2

π
x2

1 +
a4

π2
x1 +

a6

π3
(62)

The special fiber consists of (π, x3
1 + a6

π3 ). This is a multiplicity 3 rational
curve in the algebraic closure of κ

The special fiber contains no singular points since κ[x]/(x3
1 + a6

π3 ) is a field,
and the special fiber is that field tensored with κ[y]. Thus the total space
must also be regular.

Geometrically, we pass to the algebraic closure of κ, and there complete
special fiber consists of a chain of rational curves of multiplicities 1,2, and 3.
One can check that these curves intersect normally. The points on the last
component are not rational over κ.

6.6 Char 2 X1

We have the subscheme of R[x, y] defined by

y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6 (63)

with v(a1) > 0, v(a3) > 0, v(a4) = 0, a4 is not a square in κ. Computing d
dx

in the special fiber, we find that the singular locus is must be contained in
π = 0, x2+a4. Combining this with polynomial 63 we also see y2 = a6−a2a4.
Thus any singularity must be supported in the subscheme defined by the ideal
(π, x2 + a4, y

2 − a6 − a2a4). This may or may not be maximal depending on
whether a6 − a2a4 is a square in κ. If it is a square then let α be the square
root. Then the ideal (π, x3+a6, y−α) is maximal. In either case let m be the
maximal ideal and notice that equation (1) is not zero in m

m2 , so the vector
space m

m2 is two dimensional and the scheme is already regular.

Geometrically, we pass to the algebraic closure of κ, and there the special
fiber is a cuspidal cubic with the cusp not rational over κ. The cusp lies in
a degree 2 or 4 extension of κ.
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6.7 Char 2 X2

We have the subscheme of R[x, y] defined by

y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6 (64)

with v(a1) ≥ 1, v(a2) ≥ 2, v(a3) ≥ 2, v(a4) = 2, v(a6) ≥ 4, a4

π2 is not a square
in κ. Here I am assuming the single root of the polynomial x3+ a2

π
x2+ a4

π2x+ a6

π3

has been translated to 0. See the note inj section 4.2. The original special
fiber consists of a multiplicity 1 rational curve.

Blow up at the singular point (x, y, π). For the third coordinate patch put
x = x1π and y = y1π. This patch is the affine subscheme of R[x1, y1] defined
by

y2
1 + a1x1y1 +

a3

π
y1 = x3

1π + a2x
2
1 +

a4

π
x1 +

a6

π2
(65)

The special fiber consists of a multiplicity 2 rational curve defined by y2
1 = 0

This scheme has singularities, all of which are supported in (y1, π)

Blow up at the double line (y1, π). For the second coordinate patch put
y1 = y2π. This patch is the affine subscheme of R[x1, y2] defined by

y2
2π + a1x1y2 +

a3

π
y2 = x3

1 +
a2

π
x2

1 +
a4

π2
x1 +

a6

π3
(66)

The special fiber consists of a (π, x3
1 + a4

π2x1) This is a multiplicity 1 rational
curve (π, x1), and a multiplicity 2 curve (π, x2

1 + a4

π2 ). The multiplicity 1
component has no singularities. The multiplicity 2 component also has no
singularities since it is the tensor product of the field κ[x1]/(x

2
1 + a4

π2 ) with
κ[y2]. Since the special fiber has no singularities, the total space must also
be regular.

Geometrically, we pass to the algebraic closure of κ, and there complete spe-
cial fiber consists multiplicity 1 component meeting a multiplicity 2 compo-
nent, which in turn meets one multiplicity 1 and 1 multiplicity 2 component.
One can check that these curves intersect normally. The last multiplicity 2
component are not rational over κ, but is defined over a degree two extension
of κ.
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6.7.1 A Degree 2 Base Extension

Lets take a closer look at the X2 type when the characteristic of κ is 2.
We remarked above that every point of the last multipilicity two component
was a regular point. If we were to make a degree two extention of κ, this
would not be the case. Consider the field κ[α] where α is a square root of
a4

π2 . Rewriting equation 66 as

π(y2
2 +

a1

π
x1y2 +

a3

π2
y2 −

a2

π2
x2

1 −
a6

π4
) = x1(x1 + α)2 − x2

12α (67)

Focus on the line π = 0, x = −α. There are one or two singulrities on this
line depending on the number of roots of the quadratic in y2

y2
2 +

a1

π
αy2 +

a3

π2
y2 −

a2

π2
α2 −

a6

π4
+

2

π
α3. (68)

Note that we use the fact that π divides 2.

In fact, at a maximal ideal defined by the quadratic 68 and π = 0, x = −α,
equation 68 is zero modulo m2. Thus these are the one or two singularities
on this multiplicity 2 component. As we have already remarked, they are not
κ rational. But this serves to give a better picture of the geometric special
fiber.

6.8 Char 2 Y1

We have the subscheme of R[x, y] defined by

y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6 (69)

with v(a1) > 0, v(a3) > 0, v(a4) > 0, v(a6) = 0, a6 is not a square in κ. This
situation is similar to the X1 case. Computing d

dx
in the special fiber, we

find that the singular locus is must be contained in π = 0, x = 0. Combining
this with 69 we also see y2 = a6 Thus it must be supported in the subscheme
defined by the ideal (π, x, y2 − a6). Since a6 is not a square in κ, the ideal is
maximal. Since the polynomial 69 is not zero mod m2, the vector space m

m2

is two dimensional and the scheme is already regular.
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Geometrically, we pass to the algebraic closure of κ, and there the special
fiber is a cuspidal cubic with the cusp not rational over κ. The cusp lies in
a degree 2 extension of κ.

6.9 Char 2 Y2

We have the subscheme of R[x, y] defined by

y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6 (70)

with v(a1) ≥ 1, v(a2) ≥ 1, v(a3) ≥ 2, v(a4) ≥ 2, v(a6) = 2, a6

π2 is not a square
in κ. The original special fiber consists of a multiplicity 1 rational curve.

Blow up at the singular point (x, y, π). For the third coordinate patch put
x = x1π and y = y1π. This patch is the affine subscheme of R[x1, y1] defined
by

y2
1 + a1x1y1 +

a3

π
y1 = x3

1π + a2x
2
1 +

a4

π
x1 +

a6

π2
(71)

The special fiber consists of a multiplicity 2 rational curve defined by y2
1 = a6

π2

This component has no singularities since it is the tensor product of the field
κ[y1]/(y

2
1 = a6

π2 ) with κ[x1]. Since the special fiber has no singularities, the
total space must also be regular.

Geometrically, we pass to the algebraic closure of κ, and there the complete
special fiber consists of a chain of rational curves of multiplicities 1 and 2
The second curve is not rational over κ, but is over a degree 2 extension of
κ. One can check that these curves intersect normally.

6.10 Char 2 Y3

We have the subscheme of R[x, y] defined by

y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6 (72)

with v(a1) ≥ 1, v(a2) ≥ 2, v(a3) ≥ 3, v(a4) ≥ 3, v(a6) = 4, a6

π4 is not a square
in κ. The special fiber consists of a multiplicity 1 rational curve.
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Blow up at the singular point (x, y, π). For the third coordinate patch put
x = x1π and y = y1π. This patch is the affine subscheme of R[x1, y1] defined
by

y2
1 + a1x1y1 +

a3

π
y1 = x3

1π + a2x
2
1 +

a4

π
x1 +

a6

π2
(73)

The special fiber consists of a multiplicity 2 rational curve defined by y2
1 = 0

This scheme has singularities, all of which are supported in (y1, π)

Blow up at the double line (y1, π). For the second coordinate patch put
y1 = y2π. This patch is the affine subscheme of R[x1, y2] defined by

y2
2π + a1x1y2 +

a3

π
y2 = x3

1 +
a2

π
x2

1 +
a4

π2
x1 +

a6

π3
(74)

The special fiber consists of the triple line a (π, x3
1) The scheme is singular at

the ideal (x1, y
2
2 −

a6

π4 , π). Note this ideal is maximal since a6

π4 is not a square
in κ.

Blow up at this ideal. For the first coordinate patch put x1b = y2
2 −

a6

π4 , and
x1c = π. Then this patch is the affine subscheme of R[x1, y2] defined by

bc+
a1

π
cy2 +

a3

π3
y2c

2 = x1 +
a2

π
+
a4

π3
c (75)

The special fiber π = 0 consists of the c = 0, x1 = 0, y2
2 −

a6

π4 component
which has multiplicity 4, and the x1 = 0, b+ a1

π
y2 + a3

π3y2c = a4

π3 , y
2
2−

a6

π4 which
has multiplicity 2. Thus in this coordinate patch the special fiber consists
of a multiplicity 4 component intersecting with a multiplicity 2 component.
Neither of these rational curves are defined over κ since a6

π4 is not a square in
κ

To see this scheme is non singular set d = b+ a1

π
y2 + a3

π3y2c−
a4

π3 and solve for
x1 to see that the scheme is isomorphic to the subscheme of R[c, d, y2] given
by the equations

dc2 = π(1 +
a2

π2
c) (76)

y2
2 =

a6

π4
(77)

Consider the subscheme of R[c, d] modulo the first equation. It is non singular
since d

dπ
6= 0, and the second is regular generically, and in the special fiber
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π = 0 since the κ[y2]/(y
2
2 −

a6

π4 ) is a field. So the scheme defined by 76, and
77 is the tensor product of two regular schemes and thus is regular.

Geometrically, we pass to the algebraic closure of κ, and there the complete
special fiber consists of a chain of rational curves of multiplicities 1, 2, 3,
4, and 2 The last 2 curves are not rational over κ, but are over a degree 2
extension of κ. One can check that these curves intersect normally.

6.11 Char 2 Kn, n odd

We have the subscheme of R[x, y] defined by

y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6 (78)

with v(a1) ≥ 1, v(a2) = 0, v(a3) ≥
n+1

2
, v(a4) ≥

n+1
2
, v(a6) = n, a2 is not a

square in κ.

Suppose n = 1, then the scheme is already regular, and has a cusp at (x, y, π).

Otherwise n ≥ 3, Computing d
dx

= x2 in the special fiber, we find that the
only singular point on the scheme is (x, y, π). Blowing up at this ideal, we
put x = x1π, y = y1π for the third coordinate patch. This patch is the affine
subscheme of R[x1, y1] defined by

y2
1 + a1x1y1 +

a3

π
y1 = x3

1π + a2x
2
1 +

a4

π
x1 +

a6

π2
(79)

The special fiber π = 0 is the double line y2
1 = a2x

2
1 The only rational point

on this line is (x1, y1, π).

We can check that all other points on this line are nonsingular by localizing
away from (y). Putting z = x1

y1
, the open subscheme obtained by discarding

the point (x1, y1, π) is isomorphic to κ[z, y]/z2 = a2. This is isomorphic to
the tensor product of the field κ[z]/z2 = a2, and κ[y]. So all points except
(x1, y1, π) are nonsingular points.

Thus the potentially singularity is at m = (x1, y1, π). Supposing n = 3,
Equation 79 is not zero modulo m2, so the scheme is regular.
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If n ≥ 5, perform another blow-up at (x1, y1, π). Blowing up at this ideal,
we put x1 = x2π, y1 = y2π for the third coordinate patch. This patch is the
affine subscheme of R[x2, y2] defined by

y2
2 + a1x2y2 +

a3

π2
y2 = x3

2π
2 + a2x

2
2 +

a4

π2
x2 +

a6

π4
(80)

The special fiber π = 0 is the double line y2
2 = a2x

2
2.

Thus the addition to the special fiber will be another non rational multiplicity
2 component. Again the only potential singularity is at m = (x2, y2, π). If
n = 5, we are done but in general, we will need to perform n−1

2
blow ups.

Geometrically, we pass to the algebraic closure of κ, and there the complete
special fiber consists of multiplicity 1 rational curve connected to a chain of
n−1

2
multiplicity 2 components, which are not rational over κ, but are over a

degree 2 extension of κ.

One can check that these curves intersect normally, and that we have seen
that the points of intersection of two components are κ rational, and the last
multiplicity 2 component also contains one other rational point.

6.12 Char 2 Kn, n even

We have the subscheme of R[x, y] defined by

y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6 (81)

with v(a1) ≥ 1, v(a2) = 0, v(a3) ≥
n
2
, v(a4) ≥

n
2
, v(a6) ≥ n, a2 is not a square

in κ, and v(b8) = n

Computing d
dx

= x2 in the special fiber, we find that the only singular point
on the scheme is (x, y, π). Blowing up at this ideal, we put x = x1π, y = y1π
for the third coordinate patch. This patch is the affine subscheme of R[x1, y1]
defined by

y2
1 + a1x1y1 +

a3

π
y1 = x3

1π + a2x
2
1 +

a4

π
x1 +

a6

π2
(82)

The special fiber π = 0 is the quadric

y2 +
a3

π
y = a2x

2 +
a4

π
x+

a6

π2
(83)
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Supposing n = 2, v(b8) = 2 implies that this is a smooth quadric. Thus the
addition to the special fiber is a multiplicity 1 component, and the scheme
is now regular.

If n ≥ 4, the quadric is degenerate and the special fiber π = 0 is the double
line y2

1 = a2x
2
1, The only rational point on this line is (x1, y1, π). As in the Kn

for n odd, we check that all other points on this line are nonsingular points.
But since n ≥ 4, (x1, y1, π) is a singular point, and so we next blow up at
that ideal.

As in the previous case, we need a total of n
2

blow ups. Each blow up produces
an additional multiplicity 2 component, except for the last blow up which
produces a multiplicity 1 component, since v(b8) = n forces the last quadric
to be regular.

One can also check that the components intersect normally, except in the
case n = 2 In this case the entire special fiber is as the Kodaira type II. To
see the tangency, just look in the first coordinate patch of the first blow-up.

Suppose n ≥ 4. Geometrically, we pass to the algebraic closure of κ, and
there the complete special fiber consists of one multiplicity 1 rational curve
connected to a chain of n−2

2
multiplicity 2 rational curves, connected to a

last multiplicity 1 rational curve. The multiplicity two components are not
rational over κ, but are over a degree 2 extension of κ

6.13 Char 2 K ′
n
, n even

We have the subscheme of R[x, y] defined by

y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6 (84)

with v(a1) ≥ 1, v(a2) = 0, v(a3) ≥
n+2

2
, v(a4) ≥

n+2
2
, v(a6) = n, a2 is not a

square in κ, and v(b8) ≥ n. We further assume that the quadratic

y2 = a2x
2 +

a6

πn
(85)
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has no rational points. Exactly as in the Kn case we blow up at the only
singular point on the scheme (x, y, π). As above we repeat this performing a
total of n

2
blow ups.

However, in this case, we have v(a3) ≥
n+2

2
, v(a4) ≥

n+2
2

, and v(b8) > n, so
the last blow up produces the affine subscheme of R[xn, yn] defined by

y2
n + a1xnyn +

a3

π
n
2

yn = x3
nπ

n
2 + a2x

2
n +

a4

π
n
2

xn +
a6

πn
(86)

The special fiber π = 0 is not a smooth quadric, but rather the degenerate

y2 = a2x
2 +

a6

πn
(87)

which by assumption has no rational points. This last component is a double
line.

As in the Kn cases we can check that there are no singular points on this
double line, unless we make an extension of the residue field. To see this we
still make an extension of the residue field to include α with α2 = a6

πn . Then
translate y by α to obtain the scheme defined by y′2 = a2x

2. As explained
in the Kn case, this has no singularities away from (x, y′). Intersecting this
last ideal with the original ring before base extension, we obtain the ideal
(x, y2 − a6

πn ). This ideal is maximal and m
m2 is one dimensional, so we finally

conclude that there are no singular points in the special fiber and thus no
singular points in the total space.

Geometrically, we pass to the algebraic closure of κ, and there the complete
special fiber consists of one multiplicity 1 rational curve connected to a chain
of n

2
multiplicity 2 rational curves. The multiplicity two components are not

rational over κ, but are over a degree 2 extension of κ, the last component
may contain a singularity, but only in some extension of κ.

6.14 Char 2 Tn, n odd

We have the subscheme of R[x, y] defined by

y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6 (88)
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with v(a1) ≥ 1, v(a2) = 1, v(a3) ≥
n+5

2
, v(a4) ≥

n+5
2
, v(a6) = n+3, a6

πn+3 is not
a square in κ. The original special fiber consists of a multiplicity 1 rational
curve.

Blow up at the singular point (x, y, π). For the third coordinate patch put
x = x1π and y = y1π. This patch is the affine subscheme of R[x1, y1] defined
by

y2
1 + a1x1y1 +

a3

π
y1 = x3

1π + a2x
2
1 +

a4

π
x1 +

a6

π2
(89)

The special fiber consists of a multiplicity 2 rational curve defined by y2
1 = 0

This scheme has singularities, all of which are supported in (y1, π)

Blow up at the double line (y1, π). For the second coordinate patch put
y1 = y2π. This patch is the affine subscheme of R[x1, y2] defined by

y2
2π + a1x1y2 +

a3

π
y2 = x3

1 +
a2

π
x2

1 +
a4

π2
x1 +

a6

π3
(90)

The special fiber is x3
1 + a2

π
x2

1 = 0. This consists of the multiplicity 1 rational
curve x + a2

π
= 0, and the double line x2

1 = 0. All singularities supported in
(x1, π)

Blow up at the double line (x1, π). For the second coordinate patch put
x1 = x2π. This patch is the affine subscheme of R[x2, y2] defined by

y2
2 + a1x2y2 +

a3

π2
y2 = x3

2π
2 + a2x

2
2 +

a4

π2
x2 +

a6

π4
(91)

The special fiber is y2
2 = a6

π4 . Supposing n = 1, a6

π4 is not a square in κ and so
the special fiber is a double line defined over a degree two extension of κ.

Otherwise n ≥ 3. Blow up along the double line (y2, π). For the second
coordinate patch put y2 = y3π. The addition to the special fiber will be
the double line x2

2 = 0. Then blow up along the double line (x2, π). After
repeating this pair of blow ups n+1

2
times we have two multiplicity one rational

curves connected to a chain of n multiplicity 2 curves. The final coordinate
patch is

y′2 + a1x
′y′ +

a3

π
n+3

2

y′ = x′3π
n+3

2 + a2x
′2 +

a4

π
n+3

2

x′ +
a6

πn+3
(92)
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The special fiber is y′2 = a6

πn+3
. Since a6

πn+3
is not a square in κ, the special

fiber is a double line defined over a degree two extension of κ. Furthermore,
there are no singular points in this patch of the special fiber, since κ[y ′]/(y′2−

a6

πn+3
) is a field.

Geometrically, we pass to the algebraic closure of κ, and there the complete
special fiber consists of two multiplicity 1 rational curve connected to a chain
of n + 1 multiplicity 2 rational curves, the last of which is not rational over
κ, but is over a degree 2 extension of κ.

6.15 Char 2 Tn, n even

We have the subscheme of R[x, y] defined by

y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6 (93)

with v(a1) ≥ 1, v(a2) = 1, v(a3) ≥
n+4

2
, v(a4) ≥

n+6
2
, v(a6) = n + 3, a6

πn+3 is
not a square in κ. The situation is much like the n- odd case, and we use
the same blow ups. In other words blow up at the ideal (x, y, π), then at
the double lines (y1π), and (x1π). We repeat this last pair of blow ups n

2

times and so have two multiplicity one components connected to a chain of
n multiplicity 2 curves.

This last patch is the subscheme of R[x′, y′] defined by

y′2 + a1x
′y′ +

a3

π
n+2

2

y′ = x′3π
n+2

2 + a2x
′2 +

a4

π
n+2

2

x′ +
a6

πn+2
(94)

The special fiber is the double line y′2 = 0. This line contains singularities,
so we need 1 final blow up.

Blow up at the double line (y′, π). For the second coordinate patch put
y′ = y′′π. This patch is the affine subscheme of R[x′, y′′] defined by

y′′2π + a1x
′y′′ +

a3

π
n+2

2

y′′ = x′3π
n+4

2 +
a2

π
x′2 +

a4

π
n+4

2

x′ +
a6

πn+3
(95)

The special fiber is a2

π
x′2 + a6

πn+3
. Since a6

πn+3
is not a square in κ, the special

fiber is a double line defined over a degree two extension of κ. Further-
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more, there are no singular points in this patch of the special fiber, since
κ[x′]/(a2

π
x′2 + a6

πn+3
) is a field.

The final special fiber is of the same form as the Tn for n odd. Geometrically,
we pass to the algebraic closure of κ, and there the complete special fiber
consists of two multiplicity 1 rational curve connected to a chain of n + 1
multiplicity 2 rational curves, the last of which is not rational over κ, but is
over a degree 2 extension of κ.

51



7 Summary of New Reduction Types

7.1 The Extended Tate’s Algorithm

At this point we have constructed the regular model described in Theorem
6.1. We summarize the findings in this section.

By nature of the construction of the regular model, we have proven that
we can easily find the special fiber of the regular model. Thus we have an
extension of Tate’s algorithm to DVRs with non perfect residue fields.

Theorem 7.1 (Extension of Tate’s Algorithm)
Let E be an elliptic curve defined by a minimal Weierstrass equation f over
a DVR R with not necessarily perfect residue field κ. The special fiber of the
flat regular projective minimal model C → R of E specified by theorem 6.1
may be found by writing f in chart form and looking up the reduction type
in one of the charts of section 4.

The model C may be constructed by Tate’s original blow ups [TA], or by the
blow ups specified in section 6

Finally, we have a complete list of the special fibers which may arise.

Corollary 7.2 (Special Fibers)
Let C → R be a regular projective minimal model of an elliptic curve E de-
fined by a minimal Weierstrass equation f over a DVR R with not necessarily
perfect residue field κ. Then the special fiber is either one of the special fibers
on Kodaira’s list, or is one of the special fibers

Z1, Z2, X1, X2, Y 1, Y 2, Y 3, Kn, K
′

n, Tn (96)

constructed in section 6.
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7.2 The Special Fibers

In this section I will describe the special fibers that we have computed. By
the geometric special fiber we mean the variety

C⊗Rκ (97)

where κ is an algebraic closure of κ.

A given point on the special fiber may or may not be κ rational. To say
that a whole component of the special fiber is not κ rational means that the
reduced subscheme corresponding to that component is an algebraic variety
defined over κ which can not be defined over κ.

If the residue field is of characteristic 3, the special fiber is a type described
on Kodaira’s list or one of the following new types.

• Type Z1 is a nodal cubic. The node of the cubic is not a κ rational point.

• Type Z2 is a chain of 1-2-3 multiplicity components. The last component
is not rational over κ.

If the residue field is of characteristic 2, the special fiber is a type described
on Kodaira’s list or one of the following new types.

• Type X1 is a nodal cubic The node is not rational over κ.

• Type Y 1 is a nodal cubic. The node is not rational over κ.

• Type Y 2 is a chain of 1-2 multiplicity components. The last component is
not rational over κ.

• Type X2 is a chain of 1-2-1 multiplicity components, with an extra mul-
tiplicity 2 component intersecting the first multiplicity 2 component. This
last component is not rational over κ.

• Type Y 3 is a chain of 1-2-3-4-2 multiplicity components. The last two
components are not rational over κ.

• Type Kn, (n odd) is a chain of 1-2....2 multiplicity components. There are
n−1

2
multiplicity 2 components, and these are not rational over κ.

53



• Type Kn, (n even) is a chain of 1-2....2-1 multiplicity components. There
are n−2

2
multiplicity 2 components, and these are not rational over κ.

• TypeK ′

n, (n even) is a chain of 1-2....2-2 multiplicity components. There are
n
2

multiplicity 2 components, and these are not rational over κ. Furthermore,
the last component contains no κ rational points.

• Type Tn, (all n) is a chain of 1-2....2 multiplicity components. There are
n+ 1 multiplicity 2 components; only the last one is not rational over κ.

7.3 Relationship with Kodaira Types

This section is not strictly necessary to further sections, but it gives some
insight into the geometry of the new reduction types.

The new special fibers arose because the residue field κ was not perfect and
had characteristic 2 or 3. In each case a polynomial of degree 2 or 3 had
multiple roots over some extension field of κ, that were not κ rational. There
is an interesting relationship between these new types and on of the standard
Kodaira types. If we were to pretend that these non κ rational multiple
roots were indeed distinct, we would obtain a standard Kodaira type, and
the configuration of components in the new types is exactly as in the Kodaira
type but with some components identified.

As an example of how this might happen, consider a Weierstrass equation
with coefficients in Z(t)[[π]]. There is a natural map from this ring to two
different DVRs : F2(t)[[π]], and Q(t)[[π]]. The first has residue field F2(t),
and the second has residue field Q(t). π is a uniformizer for each. Now
consider the Weierstrass equation over each of these DVRs and compute
the reduction type. If the reduction type of the Weierstrass equation over
F2(t)[[π]] is one of the new types then there is some polynomial in F2(t) with
multiple roots that are not defined over F2(t). However, the corresponding
polynomial over Q(t) will have distinct roots. This can be verified case by
case, and we summarize the results in a chart.
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F2(t) F2(t) Q(t) Q(t) #Comps
New Type Config Standard Config Ident

X1 1 I0 E −
X2 1− 2− 1, 2 I∗0 1− 2− 1, 1, 1 2
Y 1 1 I0 E −
Y 2 1− 2 IV 1− 1, 1 2
Y 3 1− 2− 3− 4− 2 IV ∗ 1− 2− 3− 21, 21 2, 2

Kn n odd 1− 2..2 In 1− 1...1 n−1
2

Kn n even 1− 2...2− 1 In 1− 1...1 n−2
2

K ′

n n even 1− 2...2 In 1− 1...1 n
2

Ti 1, 1− 2− ...2 I∗n 1, 1− 2...2− 1, 1 2
Z1 (char 3) 1 I0 E −
Z2 (char 3) 1− 2− 3 I∗0 1− 2− 1, 1, 1 3

(98)

Here are some additional notes to clarify the chart. An ’E’ for a special fiber
means that the special fiber is a smooth elliptic curve. Except for the last
2 entries the residue characteristic of κ is 2. The new types for the last 2
entries actually have residue field F3(t) The Y 3 type configuration has the
two 2− 1 chains of the type IV ∗ identified as one 4− 2 chain.
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8 Higher Dimensional Bases

8.1 Elliptic Schemes

The goal of this paper is to study elliptic schemes over relatively general base
schemes. To this end, we work with a base scheme B that is Noetherian, n
dimensional, regular, integral and separated. We are going to study elliptic
schemes over B that are defined by Weierstrass equations.

Definition 8.1 (Weierstrass Elliptic Scheme)
Let B be a Noetherian, n dimensional, regular, integral, separated scheme.
A Weierstrass Elliptic Scheme over B is a subscheme X of P 2(B) given by
Weierstrass equations. That is, for each pεB there exists an affine open
U = Spec(R) containing p such over U that the scheme is equal to R[X,Y, Z]
modulo

Y 2Z + a1XY Z + a3Y Z
2 = X3 + a2X

2Z + a4XZ
2 + a6Z

3. (99)

where X,Y , and Z are projective coordinates, and aiεR. Furthermore we
assume that over the generic point of B, X is a non-singular elliptic curve.

In our analysis we will begin with a Weierstrass elliptic scheme, and construct
a birationally equivalent scheme via some blow-up procedures. In particular,
we will blow up the base, pull back the family X to the new base and then
desingularize the total space. After these blow-ups, our scheme will not
necessarily be a subscheme of two dimensional projective space. For this
reason we generalize the above definition.

Definition 8.2 (General Elliptic Scheme)
Let B be a Noetherian, n dimensional, regular, integral, separated scheme.
A General Elliptic Scheme over B is a subscheme X of PN(B) for some
integer N such that for some open subset U ⊂ B, the pullback of X to U is
a Weierstrass Elliptic Scheme.
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The reason for some of the assumptions on B are as follows: We assume that
B is a regular integral separated scheme in order to have a theory of divisors
on B, and we make the Noetherian hypothesis so that only a finite number
of blow ups will be needed when we construct a regular model over the whole
base scheme. Before examining elliptic schemes locally we define the notion
of the discriminant.

Recall that for any Weierstrass equation as in Equation 2 the discriminant is
given by a polynomial in the ai. The formula may be found in [SIL 1]. Over
a DVR, the special fiber of a Weierstrass elliptic scheme is singular if and
only if the discriminant has positive valuation. Over more general schemes
B, we define the discriminant divisor.

Definition 8.3 (Discriminant Divisor)
Let X be a Weierstrass elliptic scheme over B. For each affine open Ui =
Spec(Ri) in B consider a Weierstrass equation defining X. Let diεRi be
defined as the discriminant of the Weierstrass equation. The divisor in B
defined locally by the (di) is called the Discriminant Divisor.

Note that although the Weierstrass equations may not be unique, the dis-
criminant is well defined up to a unit. Therefore the discriminant divisor
is well defined. We are going to assume that the discriminant divisor has
normal crossings. First we focus on the local picture.

8.2 Local Elliptic Schemes

Recall that we are supposing that the base is regular of dimension n. By this
we mean that for each closed point pεB, the local ring Op is of dimension
n. This also means that for each local ring Op there exist uniformizing
parameters. Explicitly:

Definition 8.4 (Uniformizing Parameters)
Let O be a regular local ring of dimension n. The t1, ...tn are called uni-
formizing parameters for O if the ti that generate m

m2 as a vector space over
the residue field at p.
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We now make the important assumption

Assumption 8.5 (Discriminant) Let X be an elliptic scheme over B. We
always assume that the discriminant divisor has normal crossings.

Intuitively, normal crossings means that the components of the divisor inter-
sect transversely. More precisely we define:

Definition 8.6 (Normal Crossings)
Let D be a divisor on a Noetherian, regular, integral, separated scheme B.
D has Normal Crossings if for each pεB, D is the divisor (f) of an element
fεOp of the form

f = u
n

∏

i=1

tei

i

for non-negative integers ei and a unit u εOp such that the ti appearing in
the product are linearly independent elements of the cotangent space m

m2 .

We are going to use this assumption to define particularly useful sets of local
uniformizing parameters in the local rings Op.

8.3 Global Blow-ups

Before returning to the local situation, we make a remark on the nature of
the blow ups of the base scheme and the total space. If we need to blow up
the base B, either the blow-ups will be contained in one affine neighborhood,
or we will perform a blow up at a sheaf of ideals defined by the intersection of
two or more components of the discriminant locus. In this way the blow-ups
can be defined globally. The blow ups to desingularize the total space X are
also canonical enough to be defined globally, since we can define these blow
ups geometrically.

For example, we frequently put ourselves in a situation where a Weierstrass
equation

y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6. (100)
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has coefficients in some ring R, and t = 0 for some tεR defines a component
of the discriminant locus, and furthermore all singularities of X contained
in the subscheme defined by t = 0 are at x = y = 0. In this situation we
blow up at the ideal (t, x, y). Note that this ideal is geometrically defined
by a component of the discriminant locus and by the coordinates of the
singularities.

All blow ups of the base B and of the total space X will be defined geomet-
rically, and this allows us to work in one affine piece at a time. Since we are
interested in the regularity of X and the special fibers over closed points of
B, the effect of these blow ups will be analyzed in the local rings OεB.

8.4 Obtaining a DVR

Starting with a closed point pεB which contains the discriminant locus, we
work in the local ring Op. Suppose ti, i = 1, ...k define the reduced discrim-
inant locus. If we assume that the discriminant locus has normal crossings,
the ti can be completed to a set of uniformizing parameters for the local ring.
If the local ring Op has maximal ideal m, the ti, i = 1, ...n form a basis for
the vector space m

m2 . Write q for the characteristic of m
m2 ; q may be positive

or zero. Explicitly, we make a definition.

Definition 8.7 (Uniformizing Parameters)
Let E be an elliptic scheme defined by a Weierstrass equation f over a reg-
ular n dimensional local ring O with maximal ideal m. Suppose t1, t2, ...tk
define the reduced discriminant locus in Spec(O), and further suppose that
the discriminant locus has normal crossings. If tk+1, ...tn extend t1, t2, ...tk
to a system of uniformizing parameters for m, then we say the {ti} form
a Discriminant Compatible Set of Uniformizing Parameters (for m with re-
spect to E)

Next, for each ti, we can localize Op away from ti = 0. This produces a DVR
Ri with uniformizer ti and residue field Ri/tiRi. This residue field may have
either characteristic 0 or characteristic q and may or may not be perfect. We
now give notation for these ideas.
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Definition 8.8 (Localization Notation)
Let O be a regular n dimensional local ring with maximal ideal m. Suppose
{ti} is a set of uniformizing parameters for m. Then for each i define a DVR
Ri to be O localized away from the ideal (ti). Define κi to be the residue field
of Ri. Define vi to be the valuation associated to the DVR Ri. Define Hi to
be the hypersurface in Spec(O) defined by ti = 0. If E is an elliptic scheme
over O given by a Weierstrass equation f , define Ei to be the elliptic scheme
over Ri defined by tensoring the coefficients of f by Ri.

We already know how to find a regular model for the elliptic scheme over a
DVR by using the translations, charts, and blow ups in the previous sections.
The special fiber ti = 0 will be a Kodaira type, or one of the new special fibers
described in Section 7.2. Thus, for each component ti = 0 of the discrimant
locus we can define its type.

Definition 8.9 Let X be an elliptic scheme over B. Let D be a component
of the discriminat locus defined locally at a point pεB by ti = 0. Let Ei be the
elliptic scheme defined over the DVR Ri. Then the type of the component D
is the reduction type of Ei as defined in section 4.

Although the type of a component of the discriminant locus is defined locally,
it is well defined.

The uniformizing parameters described are above are special since a subset
of them describe the discriminant locus. In some of the arguments which
follow, we will need to know when a given element of Op defines a reduced
subscheme of the zero locus of these ti. Such an element will behave well in
the blow up constructions which follow.

Definition 8.10 (A {ti} Normal Element)
Let O be a regular n dimensional local ring with maximal ideal m. Suppose
{ti} is a discriminant compatible set of uniformizing parameters for m with
respect to E. An element a εO is a {ti} Normal Element if

a = u
n

∏

i=1

tei

i
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for integers ei and a unit u εO.

Clearly by definition the discriminant d is a {ti} Normal Element. We make
one more definition which generalizes the notion of a minimal Weierstrass
equation ([SIL 1]) over a DVR.

Definition 8.11 (Minimal Weierstrass Scheme)
Let X be a Weierstrass elliptic scheme over B. We call X a Minimal
Weierstrass Elliptic Scheme if for each pεB and each DVR Ri, the Weier-
strass equation over Ri defining Ei is a minimal Weierstrass equation.

We now proceed to use the above notation and definitions to produce an
analog of Weierstrass equations in chart form when working over our more
general schemes.

8.5 Simultaneous Translations

In the previous sections we showed that for an elliptic scheme over a DVR R
defined by a Weierstrass equation f , it was possible to perform R translations
so that the valuations of the ai fell into a pattern of one of the types on the
appropriate chart, that is f could be translated to chart form. We would like
to have a result for higher dimensional local rings.

Given a local ring O, and a Weierstrass equation with coefficients in O, we
would like to perform O integral translations such that for each ti in the
set of uniformizing parameters, the Weierstrass equations over Ri is in chart
form. Unfortunately this may not be possible without further assumptions.
However we can always perform O integral translations such that for each ti
in the set of uniformizing parameters, the Weierstrass equations over Ri is
at least in pre-chart form.

To specify the O translations we use the translations specified in the DVR
case. For each Ri the extended Tate’s algorithm guarantees us Ri translations
that put the equation in pre-chart form, (and ultimately in chart form). We
first note that these translations are only defined modulo ti, so we are just
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searching for an element of O that maps to a specific element α of κi under
the natural map

O → Ri → κi (101)

Since there are translations in each ”direction” defined by each of the ti in the
discriminant locus, we want to show that these translations are compatible
with one another. We want

Proposition 8.12 (Multiple Pre-Chart Form)
Let E be a minimal Weierstrass elliptic scheme defined by a Weierstrass
equation f over a regular n dimensional local ring O with maximal ideal m.
Suppose {ti} is a discriminant compatible set of uniformizing parameters for
m. Then there exists a single O translation for x, and a single O transla-
tion for y producing a translated Weierstrass equation f ′ such that for each
i ε {1, 2...n}, the Weierstrass equation f ′ over Ri is in pre-chart form. After
such an O translation we say f is In Multiple Pre-Chart Form.

The first step in proving Proposition 8.12 is to show that for a given i the
Ri translations called for in Tate’s algorithm can be lifted to O translations.

8.5.1 Integrality of Cubic Translations

The translations in Tate’s algorithm that put a Weierstrass equation in pre-
chart form involve translating a singularity of the cubic curve 2 to (0, 0) and
translating a multiple root of a quadratic or cubic polynomial (7, 8, 9, 10)
to 0. In this section we deal with the former case.

Proposition 8.13 (Cubic Translations are Integral)
Let E be an elliptic scheme defined by a Weierstrass equation f over a reg-
ular n dimensional local ring O with maximal ideal m. Suppose {ti} is a
discriminant compatible set of uniformizing parameters for m. Fix an index
i = i0. If there is a singular point on the special fiber of Ei, and there are Ri

translations that translate it to (0, 0), then there are also such Ri translations
that can be lifted to O translations.
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Given our elliptic scheme defined by a Weierstrass equation f over O, we
consider the Weierstrass equation over Ri that defines Ei. In case vi(d) = 0
or the reduction type of f over Ri is X1 or Y 1 if char(κ) = 2, or type Z1 if
char(κ) = 3, we do not need to translate a singular point to (0, 0).

If the reduction type is not one of the above few, Tate’s algorithms does
require a translation. This means there are elements x0, y0 εRi such that
modulo ti, the pair (x0, y0) defines the singular point of the cubic over κi.
Let us refer to the following commutative diagram.

Frac(O) ← Ri ← O
↓ ↓
κi ← O/(ti)

(102)

Here O/(ti) is just O modulo the ideal (ti). Considering x0 and y0 as elements
of κi = Frac(O/(ti)), we will show that x0, y0εO/(ti).

A singular point on a cubic given by a Weierstrass equation 2 f over a field
must satisfy f = 0, df

dx
= 0 , and df

dy
= 0. We obtain three relations in

κi = Frac(O/(ti)) The relations are:

y2
0 + a1x0y0 + a3y0 = x3

0 + a2x
2
0 + a4x0 + a6 (103)

a1y0 = 3x2
0 + 2a2x0 + a4 (104)

2y0 = −a1x0 − a3 (105)

Construct one more by taking Equation 105 and subtracting y0 from both
sides.

y0 = −a1x0 − a3 − y0 (106)

Notice that although x0, y0 εFrac(O/(ti)), we have the {ai}εO/(ti). We are
going to show that x0, y0 εO/(ti). To do this we will assume the contrary
and write x0 and y0 as reduced fractions with numerator and denominator in
O/(ti). Let p be a prime element in O dividing the denominator of one of x0

or y0. We define a valuation function v on Frac(O/(ti)) by setting v(p) = 1
and extending by the usual non-archimedian valuation properties. We aim
to show v(x0) ≥ 0 and v(y0) ≥ 0.
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Now apply the valuation function to both sides of equations 103, 106, 104,
and 105 and use the facts that v(ai) ≥ 0, and v(a+b)= min(v(a), v(b)) when
v(a) 6= v(b). We obtain four equations:

v(y0) + v(y0 + a1x0 + a3) = 3v(x0). (107)

v(y0) = v(a1x0 + y0 + a3). (108)

v(a1) + v(y0) = 2v(x0). (109)

v(y0) = v(a1) + v(x0). (110)

Equation 109 only holds provided v(3) = 0, and equation 110 holds provided
v(2) = 0.

The first two equations 107 and 108 clearly imply

2v(y0) = 3v(x0). (111)

Since p can not divide but 2 and 3, we can not have both v(2) > 0 and
v(3) > 0, so first assume v(2) = 0. Then equations 111 and 110 imply

2v(a1) = v(x0). (112)

Assuming instead v(3) = 0, we use equations 111 and 109 to conclude the
same relation 112. In either case, since v(a1) ≥ 0, indeed v(x0) ≥ 0 and thus
also v(y0) ≥ 0.

Thus p does not divide the denominator of either x0 or y0. This argu-
ment is valid for any prime element p of O/(ti), thus we conclude that that
x0, y0 εO/(ti). Now simply choose representatives for x0, and y0 in O to con-
clude Proposition 8.13. Of course x0, y0 can always be changed by a multiple
of ti.

We also note that the argument simplifies greatly if we assume that 1
2
εO and

we work with the simpler Weierstrass equation.

y2 = f = x3 + a2x
2 + a4x+ a6 (113)

In this case any singularity in κi must be at (xi, 0) where xiεRi defines a
multiple root of f over κi. Because f is monic, and each aiεO, we must also
have xiεO.
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8.5.2 Integrality of Remaining Translations

In this section we examine the other translations in Tate’s algorithm that
put a Weierstrass equation in pre-chart form.

In the stages of Tate’s algorithm after the singularity (x, y) has been trans-
lated to (0, 0), we have seen that there are other translations to be made.
We will ignore the translations involving the Kn , In and I∗n families because
they are not needed to achieve pre-chart form. I recall the polynomials that
specify the translations to achieve pre-chart form.

Y 2 + a1XY − a2X
2 (114)

Y 2 +
a3

π
Y −

a6

π2
(115)

X3 +
a2

π
X2 +

a4

π2
X +

a6

π3
(116)

Y 2 +
a3

π2
Y −

a6

π4
(117)

Tate’s algorithm provides an Ri translation that moves any multiple root of
one of the above polynomials to 0.

Again our arguments simplify if we assume that 1
2
εO and we work with the

simpler Weierstrass equation.

y2 = x3 + a2x
2 + a4x+ a6 (118)

because we need only consider equation 116 in this case.

Proposition 8.14 (Polynomial Translations)
Let E be an elliptic scheme defined by a Weierstrass equation f over a reg-
ular n dimensional local ring O with maximal ideal m. Suppose {ti} is a
discriminant compatible set of uniformizing parameters for m. Fix an index
i = i0. If an Ri translation is needed to translate a multiple root of one of the
polynomials 114, 115, 116, or 117 defined over κi, then this Ri translation
can be lifted to an O translation.
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Suppose that α εRi defines a multiple root of one of the above polynomials
in κi. Consider α εFrac(O/(ti)). Because all of the coefficients are elements
of O, and the polynomials are monic, we must have α εO/(ti). Now simply
choose a representative for α in O to conclude Proposition 8.13. Of course α
can always be changed by a multiple of ti.

There is but one translation we have not considered. Suppose that the char-
acteristic of κ is 2, and that f has a singularity that can not be translated
to (0, 0). Then we have either type X1 or Y 1. In order to put the Y 1 type
in chart form, we must translate any double root of x2 + a4 to 0. Because
this polynomial is monic, such an Ri translation can also be lifted to an O
translation.

The two propositions 8.13 and 8.14 together show that for a given DVR Ri,
we make choose O translations to put the Weierstrass equation over Ri in
chart form. If we can do this compatably for each i, we can prove proposition
8.12.

8.5.3 Multiple Translation Compatibility

Let ti be a discriminant compatible set of uniformizing parameters at p. We
now fit together the translations required to put the elliptic schemes over the
Ri in pre-chart form. This algorithm, which will prove of Proposition 8.12
can also be viewed as a higher dimensional version of Tate’s algorithm.

First, for each index i such that there is a singularity on the scheme over Ri

that can be translated to (0, 0), choose elements xi and yi εO that define the
O translations. Then for each fiber over the base with ti = 0, the node or
cusp is at x = xi, y = yi, and the xi, and yi are defined modulo modulo ti.

Consider a fiber of the base where two or more of the ti = 0. At such a point
the curve can still have at most one node or cusp. This means that for any
set of indices {i1, ..ik} we have

x1 = x2 = ...xk mod (t1, ..tk) (119)

y1 = y2 = ...yk mod (t1, ..tk). (120)

Now use the following proposition.
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Proposition 8.15 (Local Ring Patching)
Let O be a local ring. Let ti be a finite number of elements in the maximal
ideal indexed by iεI. Let xiεO such that for any set of indices {i1, ..ik} ⊂ I
we have

x1 = x2 = ...xk mod (t1, ..tk)

Then there exists a single element xεO such that x = xi modulo ti for all
indexes i.

The proof is easy induction. In our case it is thus possible to choose one
element x0 and one element y0 of O such that x = xi modulo ti and y = yi

modulo ti for all indexes i.

For example, if there were just two translations x1 and x2 required, we have
x1 = x2 mod (t1, t2) so that x1 − x2 = t1a+ t2b. Now set x0 = x1 − t1a, and
check that x0 = x1 mod t1 and x0 = x2 mod t2.

Step 1 in the procedure for proposition 8.12 is to take the Weierstrass equa-
tion over O and translate x by x0 and y by y0.

Step 2: If one or more the reduction types over some Ri’s is of type Y 1,
choose one x0 such that x0 is the double root of the polynomial x2 + a4

for each such index i. This may be done for multiple indices if needed by
proposition 8.15. If for one or more other indices j a singularity of the curve
Ej over Rj has been translated to (0, 0) in the previous step, we will already
have a4 = 0 mod tj, so such an x0 can be chosen as not to interfere with the
previous steps’ translations.

Step 3: For each index i such that the polynomial 114: Y 2 + a1XY − a2X
2

has a double root over κi, we may choose a single β0 (again by proposition
8.15). such that for each such index the polynomial factors in κi as

(Y − βiX)2 (121)

and β0 = βi mod ti for each such index. Now translate the Weierstrass
equation over O, translate by y → y + β0x.

At this point any further translations of x or y will be by a multiple of ti1 ...tik
where i1...ik are the indices for which translations have been made.
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Step 4: By similar arguments any double roots of the polynomial 115 over
some of the κi’s can be translated to zero by a single O translation of Y .

For example, if we need to translate the zero’s of polynomial 115 to 0 for two
indices t1 and t2, we would find one element x0εO such that the roots of

Y 2 +
a3

t1t2
Y −

a6

t21t
2
2

(122)

over κi and k2 were equal to x0 modulo t1 and t2 respectively. Then we
translate by Y ′ = Y − t1t2x0.

Step 5: Translate X by by a single element x0εO such that any multiple roots
of the polynomial 116 over some of the κi are zero.

Step 6: Translate Y by by a single element y0εO such that any multiple roots
of the polynomial 117 over some of the κi are zero.

Step 7: If there exists any one ti such that

(ti)
j | aj (123)

for j = 1, 2, 3, 4, 6, restart the procedure with a′j = aj

tj
i

. If this happens, we

did not start with a minimal Weierstrass elliptic scheme, as required in the
theorem. Frequently we do not know if our Weierstrass elliptic scheme is
minimal, so we may relax this condition of 8.12 and consult the following
section 8.6.

This concludes the sketch of the proof of Proposition 8.12. A Weierstrass
equation can be simultaneously translated for all indices i into pre-chart
form.

8.6 Defining a Minimal Scheme

In this section we discuss how to replace a Weierstrass elliptic scheme with
a minimal Weierstrass elliptic scheme. By definition a Weierstrass elliptic
scheme is not minimal if for some point pεB, and some DVR Ri at p, the
corresponding Weierstrass equation defining Ei over Ri is not minimal.
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Starting with a non-minimal scheme X over B we will construct the minimal
one. Suppose X is defined by f at p and is not minimal at p. Following the
proof of proposition 8.12, there is some element tiεO that defines a hypersur-
face Hi in the discriminant divisor of B such that at p, we have the relation
123. We note then that X is not minimal over every point of this component
Hi of the discriminant divisor. Let U ⊂ B be an affine open containing p
over which X is defined by the Weierstrass equation f .

Let f ′ be a Weierstrass equation with coefficients

a′j =
aj

tji
(124)

and consider the subscheme X ′ of P 2(U) cut out by f ′. There is a natural
rational map X → X ′ given by the ring maps

P 2(U)/(f)→ P 2(U)/(f ′)
x′ 7→ x/ti

2

y′ 7→ y/ti
3

(125)

This morphism is an isomorphism on the open subscheme ti = 0. Unfortu-
nately, this map does not extend to a morphism X → X ′, or X ′ → X. See
[HART] pp. 80 for an exercise discussing when a map of graded rings defines
a map of Proj Schemes.

We define a whole more minimal elliptic scheme X ′ over B by performing
this construction for all affine open subsets of B that contain Hi. It is easy
to construct the compatibility maps for points p contained in more than one
affine open. Thus we can patch these affine schemes to obtain a scheme
over B via this construction. We repeat the process for other components
Hi of the discriminant divisor over which the elliptic scheme is not minimal.
Because B is Noetherian and each component of the discriminant divisor has
finite multiplicity, this process will eventually terminate, and the resulting
scheme X ′ is still birational to X and we have the morphism

X → X ′. (126)

We remark that the discriminant divisor on B of X ′ is strictly less than the
discriminant divisor on B of X, and it is possible that some components
completely disappear.
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The above discussion plays a role for the following reason: We will take a
Weierstrass elliptic scheme over some base B, blow up the base via B ′ → B,
and pull back X to B′. Even if the original Weierstrass elliptic scheme is min-
imal over B, the pulled back Weierstrass elliptic scheme may not be minimal
over B′. Each time we blow up the base we may invoke this construction.
Indeed, in section 14, we repeatedly blow up the base and use combinatorial
arguments to limit the types of collisions in a settled elliptic scheme.

8.7 Translation Necessity

In this section we make a digression to discuss the necessity of translating
Weierstrass equations. It Tate’s original exposition [TA], not all of the trans-
lations that we require were made before blowing up.

Let E be a Weierstrass elliptic scheme E over a DVR R with residue field
κ. If there is a singular point in the special fiber we could just blow up at
the singular point of the surface, without ever considering a translation. Of
course we can only do this if the singular point is κ rational.

If we can choose x0, y0 εR, such that the singular point in the special fiber is
given by (x0, y0) modulo κ, then the singular point is rational. Equivalently
there exists a section s

E
↑

Spec(R)

such that the singularities in the special fiber lie in the image of s.

Now consider a Weierstrass elliptic scheme E over an n dimensional regular
local ring O. Let ti be a discriminant compatible set of uniformizing pa-
rameters for O. Proposition 8.12 states that there is a Weierstrass equation
defining E that is in multiple pre-chart form. In terms of sections, this means
that there is a section s

E
↑

Spec(O)

such that for each component Hi of the discriminant locus, such that the
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singularity on the special fiber of Ei is ki rational, all singularities of E over
Hi are contained in the the image of s.

The conditions of pre-chart and chart form for a Weierstrass elliptic scheme
can both be rephrased in terms of existence of sections. This serves to help
explain the geometry of the schemes. However, it is easier to define the
concepts of pre-settled and settled by using Weierstrass equations that are in
chart from. Furthermore, the blow up computations become more difficult if
the singularities are not translated to specific points.

8.8 Further Steps

Let us look more closely at the ideals of the blow-ups in the schemes over
the DVRs. Since the ideals were defined only by using x, y and ti with ti
a uniformizer in the DVR, these ideals can all be pushed forward to ideals
defining subschemes of E over the base Op. Thus we take the blow ups
prescribed by Tate’s algorithm and perform them on the larger scheme over
the higher dimensional rings Op. As remarked in section 8.3, these blow ups
are local versions of the global blow ups described by subschemes of X or B,
or equivalently by sheaves of ideals on X or B.

The regularity of the total space over the DVR guarantees that over at a
generic point pεX in a fiber with ti = 0, the scheme will be regular. However,
we may not have regularity of every point in this fiber, especially over a
non regular point in the discriminant locus. For example, we must check
regularity over ideals such as (t1, t2), where both t1 and t2 define components
of the discriminant locus. The fibers over such points of the base are called
collisions, and we will need to explore criteria for regularity at collisions.

To provide such a criteria, we introduce the concepts of pre-settled and settled.
In the pre-settled case we will be able to extend the arguments of this section
to prove that we can achieve multiple chart form, not just multiple pre-chart
form. In the pre-settled and settled case we severely limit the possible types
collisions, and can algorithmically further limit certain collisions. This will
put us in the situation where the blow ups of Tate’s algorithm are sufficient to
guarantee regularity over all points of the base including points corresponding
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to collisions. Finally, we can give a good description of the double or higher
dimensional collision special fibers.
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9 Blowing up the Base

9.1 Elliptic Scheme Pullback

Given a Weierstrass elliptic scheme X over B we would like to desingularize
X by performing the blow ups specified by Tate’s algorithm. To this end,
we have shown by proposition 8.12 that over a local ring, X can be cut
out by a Weierstrass equation in pre-chart form. Our first problem is that
the Weierstrass equation may not be completely in chart from, and more
seriously, if we do follow the blow ups given by Tate’s algorithm producing
X ′ → X, we are not guaranteed that X ′ is regular over points of B where
the discriminant divisor has multiple components.

Our strategy will be to blow up B and pull back X to a new base as follows.

X ′ → X
↓ ↓
B′ → B

(127)

We thus hope to overcome the second problem described above.

In this construction, the pullback of the discriminant divisor of X of B will
be the discriminant divisor of X ′ of B′. The new discriminant divisor may
have a new component. Unfortunately, the reduction type of the new com-
ponent is not always predictable based on the reduction types of the original
components.

We would like to be able to predict the type of the new components, and
we will provide criteria in sections 10 and 12 for when the new components
are indeed predictable. In these sections we introduce the notions of ”set-
tled”, and ”pre-settled”. Secondly, if such new components are predictable,
in section 14 we will algorithmically reduce to cases where performing the
blow ups given by Tate’s algorithm does produce a regular scheme. Before
attempting this resolution, we should also make sure that our Weierstrass
elliptic scheme is locally in full chart form.

An alternate strategy is to produce a well defined J morphism on the base.
This has the disadvantage of only working when 1

6
is in the local rings. How-
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ever, combined with the assumption 8.5 that the discriminant locus has nor-
mal crossings, the existence of such a morphism is strong enough to allow
us to predict the types of the new discriminant components. This technique
and the relationship with the notions of settled and pre-settled is discussed
in section 15.

We next review blow up computations using coordinates and computations
involving the pullback of a divisor.

9.2 Review of Blow-ups

Here we review the definition and interpretation of blow-ups, and particularly
focus on blowing up a local ring. We have indeed already computed blow
ups in section 6.

A blow is a type of morphism of schemes X ′ → X that attempts to desingu-
larize X. Geometrically, blowing up a scheme at a point separates tangent
vectors at the point. One classical definition is given in [HAR]. It presents a
blow up as a quasi projective subvariety of An × P n.

Definition 9.1 Let A be an affine subvariety of An = Spec(k[x1, ....xN ])
passing through the point p given by x1 = ... = xn = 0. Then the Blow up of
A at p is the graph of the birational map to P n = Proj[y1, ...yn] given by
yi = xi.

A more general and technical definition is that a blow up is the Proj of a
sheaf of graded rings [HART]. The graded rings in the construction are called
blow up algebras.

Definition 9.2 Let X be a scheme and I be a coherent sheaf of ideals on
X. The Blow up of X at I is the scheme obtained by patching together the
following schemes for ecah affine open U = Spec(R) in X.

Proj(R + It+ I2t2 + ...)

Here I ⊂ R is the ideal I (U ) from the sheaf I , and the ring (R+It+I2t2+...)
is given a grading by setting degree(t)=1.
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When computing in coordinates, we need to understand this latter definition.
A discussion of how the Proj of a graded ring R can be patched together from
affine schemes can be found in [EIS-HAR]. I mention that the rings in the
construction are the zero’th graded pieces of localizations of R. A detailed
example of blowing ups a hypersurface in projective space using coordinates
is presented in [SIL 2].

9.2.1 Blowing up a Local Ring

Now we discuss the local effect of blowing up a regular Noetherian scheme
X at a regular subscheme S. We assume that S is reduced, regular, and
irreducible. So start with a local ring O of dimension n and and ideal I
cutting out S. With these assumptions, R/I is also a local Noetherian regular
ring, and thus a complete intersection ring. By a theorem in commutative
algebra, [MAT] 21.2, I must be generated by an R-regular sequence. So write

I = (t1, ...tk). (128)

By another theorem in commutative algebra, [MAT] 17.4, the {ti} can be
extended to a set of uniformizing parameters for O. Then the blow up of X
along S is given by

Proj(O[a1, ...ak]/(aitj − ajti) (129)

Where the ai have grading 1. The first coordinate patch of the Proj is thus
given as

Spec(O[a2, ...ak]/(ti = t1ai)) (130)

Where the ai are dehomogenized coordinates. Note that the above ring is
not local, but at a given point it is easy to find uniformizing parameters. For
example at the local ring of the point a2 = ... = ak = 0 a set of uniformizing
parameters is

{t1, a2, ...ak} (131)

We now know how to compute blow ups locally in coordinates. Secondly, it
is easy to apply the Jacobian criterion mentioned in section 6.3 to check that
this last scheme is regular. We obtain the following result

Proposition 9.3 Let X be a Noetherian regular scheme. Let S be a regular
subscheme of X. Then the blow up of X along S is again regular.
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9.3 The Exceptional Divisor

In this section we continue to consider the blow up of a local ring, and
consider the preimage in B of a divisor on O.

Let X be a Weierstrass elliptic scheme over a local ring O with maximal ideal
m. Assume {ti} is a discriminant compatible set of uniformizing parameters
for m. We blow up O at the subscheme defined by the intersection of two or
more of the hypersurfaces Hi. For simplicity reorder the indices and assume
that we are blowing up at the intersection of the first l hypersurfaces Hi.

B → Spec(O) (132)

After pulling back X to the new base B, we still have a Weierstrass elliptic
scheme, and any divisor on O pulls back to a divisor on B. We can then
consider the component of this divisor that is supported in the exceptional
divisor of the blow up. To calculate its degree we consider the valuation at
the DVR defined by the exceptional divisor of the blow up. We now define
these terms.

Definition 9.4 (Exceptional Divisor)
Let X be a Weierstrass elliptic scheme defined over a regular n dimensional
local ring O with maximal ideal m. Suppose {ti} is a discriminant compatible
set of uniformizing parameters for m. Let B → Spec(O) be the blowing up at
the subscheme S defined by the ideal (t1, ...tl). Define the Exceptional Divisor
of the blow up to be the inverse image S. In each of the local rings of B we
can localize at the exceptional divisor to obtain a DVR Re. The valuation ve

associated to Re is called the Exceptional Valuation.

Although O is a local ring the blowing up of it B will not be. So we consider
O′, a local ring of B. We note that we may produce new uniformizing
parameters for O′ from the original {ti} in the following sense.

Proposition 9.5 (New Uniformizers)
Let X be a Weierstrass elliptic scheme defined over a regular n dimensional
local ring O with maximal ideal m. Suppose {ti} is a discriminant compatible
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set of uniformizing parameters for m. Let B → Spec(O) be the blowing up
at the subscheme S defined by the ideal (t1, ...tl). Let te = 0 define the
exceptional divisor of the blow up. Let O′

p be a local ring of B. Let ui be
the subset of the {ti} such that the hypersurface Hi passes through the point
p. Then the set {te, ui1 , ..uil} extends to a discriminant compatible set of
uniformizing parameters for O′

p.

Thus the uniformizing parameters to differ at different points on the excep-
tional divisor. However te belongs to this set for every point on the excep-
tional divisor. We also can pull back any element xεO to an element in O′.
We would like to be able to compute the exceptional valuation of x in terms
of the various valuations vi of x in O.

Proposition 9.6 (Computing the Exceptional Valuation)
Let O be a regular n dimensional local ring O with maximal ideal m. Suppose
{ti} is a set of uniformizing parameters for m. Let B → Spec(O) be the
blowing up at the ideal (t1, ...tl). In any local ring O′ of B, let ve be the
exceptional valuation. Let xεO, and let x′ be the image in O′. Then

ve(x) = max (n |x ε In) (133)

The proof of this follows directly from the definition of a blow-up. In partic-
ular, before passing to a more minimal scheme by replacing the Weierstrass
equation with a minimal one as in section 8.6, we apply the relation 133 to
a1, ..., a6 and to d, the discriminant divisor itself.

9.4 Predicting the Exceptional Divisor

As we blow up the base at ideals such as (t1, ....tl), we would like to predict
the reduction type of the exceptional divisor. Ideally, we would like to obtain
a Weierstrass equation already in pre-chart or chart form given the fact that
we started with a Weierstrass equation in pre-chart or chart form. Since the
reduction types are mainly determined by the valuations of the ai, and d, we
focus on these.
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By using equation 133 above, we see that if the ai, or d are {ti} normal
elements as defined in 8.7, we have the following relations.

ai = u
∏

tek

k (134)

d = u
∏

tfk

k (135)

with u a unit, and we blow up at the ideal I = (t1, ....tl) then the exceptional
valuations of the ai’s and of d are just the sum of the valuations vk(ai) or
vk(d) a in the DVRs Rk. That is

v(ai) =
l

∑

k=1

ek (136)

v(d) =
l

∑

k=1

fk (137)

Although we assume that the discriminant divisor on the base has normal
crossings,and thus that d is a {ti} normal element, we can not do this for
the ai. The ai are not translation invariant, and we do need translations to
guarantee chart form for the Weierstrass equations. Of course c4, c6, and d
are translation invariant.

In general we can not predict the type of the exceptional divisor, and we will
need to make assumptions that allow us to do so. Away from characteristic
2 and 3, the assumptions that d has normal crossings and the J morphism
was well defined would be sufficient to allow us to predict the type of the
exceptional divisor. Unfortunately, in the cases where the local ring Op has
residue characteristic 2 or 3, the reduction type of the exceptional divisor is
not only a function of the reduction types along the hypersurfaces {ti = 0}
participating in the collision, but rather depends on the exact valuations and
values of the ai’s. This is because after each blow up, we may need further
translations to ensure that our Weierstrass equations are in pre-chart or chart
form.

For example, even if d has normal crossings and J is well defined, the dis-
criminant divisor may have intersecting components of Type II and Type
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III. The exceptional divisor of a blow up at the intersection could have
many different reduction types, depending on the ai’s. This contrasts with
the case char 6= 2, 3 where a Type II and Type III can not even collide
provided the discriminant locus has normal crossings.

We explore the ramifications of a J morphism assumption in section 15. There
we relate them to the more general concepts of settled and pre-settled.
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10 A Pre-Settled Base

10.1 Grouping the Reduction Types

10.1.1 Motivation

As defined in 8.9, each component of the discriminant divisor has a type.
The discriminant divisor may not be irreducible, so we make a definition.

Definition 10.1 Let X be a Weierstrass elliptic scheme defind over B. Let
D be the discriminant divisor on B. Fix pεD, and let Hi = 0 be the compo-
nents of D passing through p. If the components Hi have reduction types Ti,
we define say that the types Ti Collide at p, and that p is a Collision Point
of B

The valuation of the discriminant will be an important tool in controlling
collisions. Our assumption that d has normal crossings allows us to use
relation 137 to conclude that the valuation of the discriminant is additive in
blow ups. However, this assumption is not sufficient to control collisions. One
problem is that a given reduction type does not have a specified valuation of
the discriminant. For example, if the characteristic of κ is 2 a type II, need
not have v(d) = 2.

This chapter will divide the reduction types into various groups. The notion
of pre-settled will be introduced as an assumption which eliminates collisions
among reduction types coming from different groups. This is the first step
in controlling which collisions are ultimately allowed. We define the groups
differently at points P depending on whether or not the residue characteristic
of Op is 2.

10.1.2 Characteristic 6= 2

Consider a Weierstrass elliptic scheme defined over a local ring Op of residue
characteristic 6= 2. Let {ti}, be a discriminant compatible set of uniformizing
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parameters for O. Then the residue characteristic of each of the Ri’s is also
different from 2. We will define three groups of reduction types, and each Ei

may belong to one or more groups.

Examining chart 4.9, we see that for types In, and I∗n the valuation of a2 is
required to be 0 and 1, respectively. We will put the types In, and I∗n in the
first group. I remark that given the existence of a J morphism one could
conclude that J =∞ for a reduction type if and only if the type was in the
first group.

Now looking at the other types on the chart 4.9, we see that either a4, or
a6 is set to a precise valuation. In fact we can separate the reduction types
depending on whether the valuations of a3

4 or a2
6 is minimal. Put a reduction

type in the second group if v(a3
4) ≤ v(a2

6), and put a reduction type in the
third group if v(a3

4) ≥ v(a2
6). A reduction type I∗0 can be both the second

and third group if v(a3
4) = v(a2

6).

The reason to define the groups this way is the following observation. Suppose
that at p, only types of the first group collide, and we blow up the base at
p. Suppose also that a2 was a {ti} normal element. Then in the DVR Re of
the exceptional divisor the valuation of a2 would be minimal among a6

2, a
3
4,

and a2
6. Consulting chart 4.9, we conclude reduction type of the exceptional

divisor would also be in the first group.

The same argument works for the second and third groups provided a4 or a6

is a {ti} normal element.

10.1.3 Characteristic 2

Similar to the above case, we consider a Weierstrass elliptic scheme defined
over a local ring Op, but in this case suppose Op has residue characteristic
2. Let {ti}, be a discriminant compatible set of uniformizing parameters for
O. Then at least one of the Ri’s has residue characteristic 2. In this case we
define five groups of reduction types.

As in the characteristic 6= 2 case, we see on the chart 4.2 that most of
the reduction types require one of the ai, to be set to a precise valuation.
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Motivated by this chart, we group the reduction types based on which of the
valuations of the following 5 monomials is minimal

a12
1 a6

2 a4
3 a3

4 a2
6 . (138)

We form these groups for the same reason as in the above case. If all reduction
types in a collision belong to the same group, then the reduction type of the
exceptional divisor of a blow up is again in the same group. In this case we
still need the assumption that the appropriate ai is a {ti} normal element.

10.2 Definition of the Groups

10.2.1 Characteristic 6= 2

Here we make a formal definition which states which groups a given reduction
types belongs to. We assume the local ring is not of characteristic 2.

Definition 10.2 (Groups in Char 6= 2)
Let E be an elliptic scheme defined over a local ring of residue characteristic
6= 2. For a discriminant compatible set of uniformizing parameters {ti}, fix
one Ei over the DVR Ri. Suppose Ei has reduction type Ti. We say Ti is in
Group a2 if it is type In or I∗n. We say Ti is in Group a4 if it is type III,III∗,
or I∗0 with v(a4) = 2. We say Ti is in Group a6 if it is type Z1,II,IV ,Z2,IV ∗,
II∗, or I∗0 with v(a6) = 3.

Examining chart 4.9 we see that for each type in the first group v(a2) ε {0, 1}.
Each type in the second group has v(a4) ε {0, 1, 2, 3}. Each type in the last
group has v(a6) ε {0, 1, 2, 3, 4, 5}. This the reason why the groups are so
named.

10.2.2 Characteristic 2

Here we make a formal definition which states which groups a given reduction
types belongs to in case the local ring is of characteristic 2. These groups
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are defined by which of the a
( 12

i
)

i is minimal.

Definition 10.3 (Groups in Char 2)
Let E be an elliptic scheme defined over a local ring of residue characteristic
6= 2. For a discriminant compatible set of uniformizing parameters {ti}, fix
one Ei over the DVR Ri. Suppose Ei has reduction type Ti. We say Ti is in
Group a1 if it is of type In. We say Ti is in Group a2 if it is of type Kn,K

′

n

In, or X1 or Y 1 with v(a2) = 0. We say Ti is in Group a3 if it is of type
IV or IV ∗. We say Ti is in Group a4 if it is of type X1,III,X2,III∗, or I∗0
with v(a4) = 2. We say Ti is in Group a6 if it is of type Y 1,II,Y 2,Y 3,II∗,
or X1 with v(a6) = 0, or IV with v(a6) = 2, or I∗0 or X2 with v(a6) = 3, or
IV ∗ with v(a6) = 4.

As is evident by the definition, some of the types may belong to one or more
of the ai groups. Examining chart 4.2 we see that for each type in Group ai,
v(ai) ε {0, 1, ..i− 1}.

10.3 Straight and Residual Discriminant

To separate collisions between types in the groups described above, we will
introduce the notion of a pre-settled point in the base. The notion of pre-
settled is one that relates the valuations vi of the discriminant d at each of
the DVRs Ri, to that of the valuation ve(d) in the DVR Re of the exceptional
divisor defined by a blow up.

When working with a DVR of residue characteristic 0, the valuation of the
discriminant is just determined by the reduction type. We do not make this
assumption, and in order to separate the above defined groups, we define
another measure. For any DVR we divide the valuation of the discriminant
into two integers: A straight part and a residual part.

Definition 10.4 (Straight Part of d)
Let E be a Weierstrass elliptic scheme defined over a DVR R defined by a
Weierstrass equation f in pre-chart form. Define the Straight Part of the
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Discriminant, Straight(E), to be the minimum of the valuations of the ele-
ments

a2
6 a3

4 a4
3 a6

2 a12
1 (139)

If we are dealing with the simpler Weierstrass equation.

y2 = x3 + a2x
2 + a4x+ a6 (140)

we can just omit a1 and a3 from the above definition.

Specifically, we have the following values of the straight part of the discrim-
inant:

Reduction Type straight(E)
I0, In, X1, Y 1, Z1, Kn, K

′

n 0
II 2
III 3

IV, Y 2 4
I∗0 , I

∗

n, X2, Z2, Tn 6
IV ∗, Y 3 8
III∗ 9
II∗ 10

(141)

We can also define a the residual part of the discriminant

Definition 10.5 (Residual Part of d)
Let E be a Weierstrass elliptic scheme defined over a DVR R. Then define
the Residual Part of the Discriminant by

residual(E) = v(d)− straight(E) (142)

When we have an elliptic scheme defined over a higher dimensional local ring
O, we define these measures for each DVR Ri as follows.

Definition 10.6 (Indexed Straight and Residual Parts)
Let E be a Weierstrass elliptic scheme defined over a regular n dimensional
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local ring O. Suppose {ti} is a discriminant compatible set of uniformiz-
ing parameters for O. Then for each i we consider Ei over Ri and define
straighti(E) = straight(Ei), and residuali(E) = residual(Ei) .

Clearly for all i,

residuali(E) = vi(d)− straighti(E). (143)

Since we may need to replace our Weierstrass elliptic scheme with a more
minimal one as in section 8.6, we really consider the following sextuplet of
valuations modulo the following vector of integers.

v(a1) v(a2) v(a3) v(a4) v(a6) v(d)
1 2 3 4 6 12

(144)

Thus straight(E) is also only defined modulo 12, and we choose for conve-
nience to deal with residual(E), which does not change when passing to a
more minimal scheme.

10.4 Fault Integer

We defined the groups of reduction types as above to better predict the type
of the exceptional divisor in a blow up. We remarked that if all reduction
types in a collision belong to the same group then the type of the exceptional
divisor is also in this group. This holds provided that the appropriate ai is a
{ti} normal element. This is the property that nice collisions should have.

With the definition of the straight and residual part of the discriminant
above, these nice collisions have the property that after a blow up and before
replacing the Weierstrass equation with a more minimal one, the following
measures in Re of the discriminant are related to the same measures in the
DVRs Ri as follows.

ve(d) =
k

∑

j=1

vj(d) (145)

straighte(E) =
k

∑

j=1

straightj(d) (146)
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residuale(E) =
k

∑

j=1

residualj(d) (147)

We now define a measure of the failure of the relations 146 and 147.

Definition 10.7 (Fault Integer)
Let E be a Weierstrass elliptic scheme defined over a regular n dimensional
local ring O. Suppose {ti} is a discriminant compatible set of uniformizing
parameters for O. Let B → Spec(O) be the blowing up at the ideal (t1, ...tl),
and let ve be the valuation associated to exceptional divisor. Then we define
The Blowup Fault at O to be the difference

Fault(E) = residuale(E)−
l

∑

j=1

residualj(E) (148)

Define the PreFaultp(E) at p to be the maximum over all such blowups.

I remark that the maximum can be reached by blowing up at the closed point
of O.

10.5 Spot Singularities

Let X → B be an elliptic scheme. The motivation for limiting collisions is
so that we may desingularize X by applying Tate’s algorithm for each com-
ponent of the discriminant divisor. We have already mentioned that certain
types of collisions may prevent this procedure from working. Furthermore,
we may encounter other singularities even over smooth points of the discrim-
inant locus.

Consider a point pεB Such that exactly one component H of the discriminant
locus passes through p, but the appropriate ai for that group is not a {ti}
normal element. Then after we apply Tates algorithm for the component H,
the total space will be regular over the generic point of H but not over p.
This can be verified by closely examining the last stage in Tate’s algorithm
where scheme is checked to be regular.
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Such a point p can be called a spot singularity, because a singularity remains
in the total space, yet p is not a collision point in the discriminant divisor.

Fortunately, the measure Pre − Faultp(d) defined above also detects this
situation.

10.6 Defining Pre-Settled

A point pεB is pre-settled if the residual part of the discriminant is additive.
Equivalently there is no Pre-Fault at p.

Definition 10.8 (Pre-Settled)
Let X → B be a Weierstrass elliptic scheme defined over B. Let pεB. We
say X → B is Pre-Settled at p if PreFaultp(E) = 0. An elliptic scheme is
Pre-Settled if it is pre-settled at every point pεB.

This notion strong enough to allow only collisions of reduction types in the
same group, to force the appropriate ai to be {ti} normal elements, and to
eliminate spot singularities. If we assume that our scheme is pre-settled,
the reduction type of the exceptional divisor in a blow up will be more pre-
dictable.

10.7 A Rational Map

In this section we define local rational maps on the base. If our elliptic
scheme is pre-settled this map will actually define a morphism of schemes.
By considering the fibers of the morphism, we will have a more precise and
general definition of the groups of reduction types. For each p in the base
Let Op be the local ring at p, and define a rational map from Op to P 4(Op)
as follows.

Definition 10.9 (Rational Map)
Let E be a Weierstrass elliptic scheme defined by a Weierstrass equation f
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over a regular n dimensional local ring Op. Suppose that f is in multiple
pre-chart form. Define a rational map by

ψ(p) = (a12
1 , a

6
2, a

4
3, a

3
4, a

2
6) (149)

Note that ψ is only defined locally and depends on the Weierstrass equation
f . We compute the values of the rational map in the pre-settled case. Let
{ti} be a set of discriminant compatible uniformizing parameters for Op. For
each index i cancel out the highest power of ti in the definition of ψ. Notice
that for each index i this highest power is equal to straighti(d), the straight
part of the discriminant in the DVR Ri.

Supposing, that after this division, one of the components in the definition
of ψ is a unit. Then the rational map is well defined at p, and the value ψ(p)
is just given by the reduction of each component to the residue field of Op.

Now suppose that after that division every component of ψ is still in the
maximal ideal of Op. Then we consider blowing up the base at the maximal
ideal of Op, and choose any point q on the exceptional divisor. Let t be the
uniformizer corresponding to the exceptional divisor. Note that ψ can be
defined on the whole blow up of Op.

When we consider ψ in one of the coordinate patches of the blow up, we see
that one power of t can be factored out of the five-tuple defining ψ for each
power of ti that was previously factored out, plus at least one extra power of
t.

This is because by equation 133 the valuation of an xεOp at t corresponds to
the highest power of the maximal ideal that contains x.

In other words, before possibly replacing the Weierstrass equation with a
more minimal one,

straight(E) >
k

∑

j=1

straightj(d) (150)

Or equivalently

residual(E) <
k

∑

j=1

residualj(d). (151)
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This violates the pre-settled condition, and is thus a contradiction. We have
proved the following proposition.

Proposition 10.10 (Rational Maps is a Morphism)
Let E be a Weierstrass elliptic scheme defined over B Suppose the elliptic
scheme is pre-settled at pεB. Then the rational map ψ defined at p is a
morphism.

Next we will consider fibers of the morphism to give a good description of
what reduction types can collide in the pre-settled case.

10.8 Fibers of the Morphism

10.8.1 Characteristic 6= 2

In this case we can use the shorter form of the Weierstrass equation and also
elliminate the components involving a1 and a3 in the definition of ψ.

ψ(p) = (a6
2, a

3
4, a

2
6) (152)

Since ψ is a morphism at least one component is a unit. We examine chart
4.9 and make a chart of which reduction types can occur at various fibers
of the morphism ψ. This chart can also be regarded as a finer analysis of
the groups defined above, because it also describes what reduction types can
belong to more than one group. In this chart we omit mention of the Type
I0, and denote by an asterix an arbitrary unit.

Proposition 10.11 (Pre-Settled Collisions in Char 6= 2)
Let E be a pre-settled Weierstrass elliptic scheme given by a Weierstrass
equation f over a local ring Op of residue characteristic 6= 2. Let {ti} be a
discriminant compatible set of uniformizing parameters for Op. Then if ψ(p)
is as in the first column of Chart 153, the only possible reduction types Ti

over each Ri are as in the second column of Chart 153. Furthermore the the
ai mentioned in the third column must be {ti} normal elements in O.
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ψ(p) Types ai normal
(1, 0, 0) In, I

∗

n a2

(0, 1, 0) III, I∗0 , III
∗ a4

(0, 0, 1) Z1, II, IV, I∗0 , Z2, IV ∗, II∗ a6

(0, ∗, ∗) I∗0 a4, a6

(∗, 0, ∗) I∗0 a2, a6

(∗, ∗, 0) I∗0 a2, a4

(∗, ∗, ∗) I∗0 a2, a4, a6

(153)

The I∗0 must have v(a4) = 2 at values of ψ with the second component a unit,
and must have v(a6) = 3 at values of ψ with the third component a unit.

10.8.2 Characteristic 2

In this case we can use the full form of the definition of ψ. Since ψ is a
morphism at least one component is a unit. We examine chart 4.2 and make
a chart of which reduction types can occur at various values of ψ. In this
chart we omit mention of the Type I0, and denote by an asterisk an arbitrary
unit. Note the residue field for some of the DVRs Ri obtained by localizing
Op may have residue characteristic 0, so we also refer to chart of section 4.6.

Proposition 10.12 (Pre-Settled Collisions in Char 2)
Let E be a pre-settled elliptic scheme given by a Weierstrass equation f over a
local ring Op of residue characteristic 2. Let {ti} be a discriminant compatible
set of uniformizing parameters for Op. Then if ψ(p) is as in the first column
of Chart 154, the only possible reduction types Ti over each Ri are as in the
second column of Chart 154. Furthermore the the ai mentioned in the third
column must be {ti} normal elements in Op.
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ψ(p) Types ai normal
(∗, ∗, 0, 0, 0) In a1, a2

(∗, 0, 0, 0, 0) In a1

(0, ∗, 0, 0, 0) In, Kn, I
∗

n, Tn a2

(0, 0, ∗, 0, 0) IV, IV ∗ a3

(0, 0, 0, ∗, 0) X1, III, I∗0 , X2, III∗ a4

(0, ∗, 0, ∗, 0) X1, I∗0 , X2 a2, a4

(0, 0, 0, 0, ∗) X1, Y 1, II, IV,X2, Y 2, I∗0 , IV
∗, Y 3, II∗ a6

(0, 0, ∗, 0, ∗) IV, IV ∗ a3, a6

(0, 0, 0, ∗, ∗) X1, I∗0 , X2 a4, a6

(0, 0, 0, ∗, ∗) I∗0 a2, a6

(0, ∗, 0, ∗, ∗) X1, I∗0 , X2 a2, a4, a6

(154)

We refer to the groups by which ai’s are required to be {ti} normal elements.
The In type in the a2 group must have residue characteristic 0. Furthermore,
for each type in a group with ai forced to be a {ti} normal element, the
valuation of ai must be the minimum allowed by the appropriate chart. For
example, a type X1 in group a2, a4 must have v(a2) = 0.

10.9 Groups are separated

The above analysis proves

Proposition 10.13 (Pre-Settled Separates Groups)
Let E be a pre-settled Weierstrass elliptic scheme defined over B with dis-
criminant divisor D. If D has two or more component intersecting at a point
pεB then the reduction types of these components lie in the same group.

Thus if E ia a pre-settled Weierstrass elliptic scheme, and p is a point in the
base B, by abuse of notation we can say that p itself belongs to a given group
of reduction types.
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We further note that a at point p that is not in group a1 or a2 none of the
components of the discriminant divisor are a type in one of the infinite fam-
ilies of reduction types. We conclude that at such a point p, a Weierstrass
equation in multiple pre-chart form is actually already in multiple chart form.
If we were only interested in such points we could skip the following sections
and jump directly to section 14. But to explore the behavior at points which
involve the families of reduction types we must show first that we can trans-
late to multiple chart form, and make the further assumption that the elliptic
scheme is settled. This will allow us to define another rational map which will
be a morphism and will further limit collision between types in the infinite
families of reduction types.
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11 Multiple Chart Form

We have already remarked that at a point p that is not in group a1 or a2

a Weierstrass equation in pre-chart form is already in chart form. In this
section we deal with points of the base which do have reduction types in
one of the infinite families and show that we can translate our Weierstrass
equation into multiple chart form.

That is we aim to strengthen Proposition 8.12 to the following

Proposition 11.1 (Multiple Chart Form)
Let E be a pre-settled elliptic scheme defined by a Weierstrass equation f over
a regular n dimensional local ring O with maximal ideal m. Suppose {ti} is
a discriminant compatible set of uniformizing parameters for m. Then there
exists a single O translation for x, and a single O translation for y produc-
ing a translated Weierstrass equation f ′ such that for each i ε {1, 2...n}, the
Weierstrass equation f ′ over Ri is in chart form. After such an O translation
we say f is In Multiple Chart Form.

To prove this we can already assume that f is in multiple pre-chart form.
We then use the pre-settled hypothesis of the previous section to note that
the reduction types involved must be members of the same group. We need
only deal with the case where the group is of type a1 or a2. Because the
analysis is simpler when the residue characteristic of O is not 2 we deal with
this case first.

11.1 Characteristic 6= 2

In this case we can use the shorter form of the Weierstrass equation, and we
do not need to consider any translations involving y. We further assume that
we are dealing with reduction types which all belong to the a2 group. These
are just the In and I∗n types. We let {ti} be a discriminant compatible set
of uniformizing parameters at p and assume f is in multiple pre-chart form.
We have the situation where our Weierstrass equation is given by

y2 = x3 + a2x
2 + a4x+ a6 (155)
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with a2 a {ti} normal element. In fact if the reduction type is In over Ri

then vi(a2) = 0, and if the reduction type is I∗n over Ri then vi(a2) = 1.

We recall that to translate to chart form in the case of an elliptic scheme
over a DVR R with uniformizer π we just needed to translate by the double
roots of such polynomials as

a2x
2 +

a4

π
x+

a6

π2
(156)

in the In case and
a2

π
x2 +

a4

π3
x+

a6

π4
(157)

in the I∗n case. In the DVR case we did not need the fact that a2 or a2

π
was

a unit in R, but we use this fact when dealing with a local ring O.

Let {ri} be a the subset of the {ti} such that f has a reduction type In over
Ri, and {si} be a the subset of the {ti} such that f has a reduction type I∗n
over Ri. Then for each ri we have vi(a2) = 0, vi(a4) ≥ 1, and vi(a6) ≥ 1 and
for each si we have vi(a2) = 1, vi(a4) ≥ 3, and vi(a6) ≥ 4. In the discussion
which follows I will use only one index r = ri and one index s = si, but the
argument is the same regardless of the number of indices present in the sets.

Since f is already in pre-chart form, we must ensure that all further transla-
tions of x are multiples of rs2. We consider the polynomial

a2

s
x2 +

a4

rs3
x+

a6

r2s4
(158)

We must translate x if it has a double root modulo r, modulo s, or both.
because a2

s
is a unit in O we know that any double root modulo r or modulo

s can be lifted to an O integral element. Furthermore if there is a double root
modulo r and modulo s, then it must agree modulo (r, s). This means we
can find a single element x0 such that x0 reduces to the double root modulo r
and modulo s. We then translate x by −rs2x0. Now all further translations
of of x must be multiples of r2s3.

Assuming that the polynomial 158 has a double root modulo r and modulo
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s, we would next examine

a2

s
x2 +

a4

r2s4
x+

a6

r4s6
(159)

for double roots. By the same argument there would be a single element x0

such that x0 reduces to the double root modulo r and modulo s. We then
translate x by −r2s3x0. Now all further translations of of x must be multiples
of r3s4.

We repeat the process as long as the polynomial has a double root modulo r
or modulo s. Of course once the polynomial does not have a double root we
would no longer divide a4 or a6 by a higher power of r or s in the following
stage. The same argument works when there are more than one element in
the sets {ri} or {si}; we just divide a2, a4 and a6 by the appropriate powers
of ri and si at each stage.

Thus we conclude that after a single O translation the Weierstrass equation
f can be put into multiple chart form.

11.2 Characteristic 2

In this case we must use the full form of the Weierstrass equation, and we
need to consider both translations involving x and y. We further assume
that we are dealing with reduction types which all belong to either the a1

group, the a1 − a2 group , or the a2 group. The a1 group, and the a1 − a2

group can be done at once. This group involves only In types. The a2 group
may contain also members of the Kn and I∗n families.

We deal first with the a1 group and the a1 − a2 group. This means we have
a Weierstrass equation with a1 a unit.

11.2.1 a1 is a Unit

We recall that to translate to chart form in the case of an elliptic scheme
over a DVR R with uniformizer π we just needed to translate by the possible
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singularities of quadratics of the form

y2 + a1xy +
a3

π
y = a2x

2 +
a4

π
x+

a6

π2
. (160)

Because b2 = a2
1 + 4a2 is a unit, if the quadric is singular it consists of two

intersecting lines. In fact we can solve for the coordinates of this point of
intersection with equations 33 and 34.

In the DVR case we did not need the fact that a1 was a unit in R, but we
use this fact when dealing with a local ring O.

Let {ri} be a the subset of the {ti} such that f has a reduction type In over
Ri,

Since f is already in pre-chart form, we have for each such ri, vi(a3) ≥ 1,
vi(a4) ≥ 1, and vi(a6) ≥ 2.

In the discussion which follows I will use just two elements r and s of this set,
but the argument is the same regardless of the number of elements present
in the set. Again since f is already in pre-chart form, we must ensure that
all further translations of x and y are multiples of rs. We consider the
polynomial

y2 + a1xy +
a3

rs
y = a2x

2 +
a4

rs
x+

a6

r2s2
. (161)

If this polynomial defines a degenerate quadric modulo r or modulo s, we
must translate the singular point to (0, 0). For either r or s we may use
equations 33 and 34 to find the coordinates of the singular point, and by
these equations we remark that these values of x and y can be lifted to an O
integral elements. Furthermore if the polynomial is degenerate both modulo
r and modulo s, then the coordinates of the singularity must agree modulo
(r, s). This means we can find a single element x0 and a a single element y0

such that (x0, y0) reduces to the double point modulo r and modulo s. We
then translate x by −rsx0 and y by −rsy0 Now all further translations of of
x and y must be multiples of r2s2.

Assuming that the polynomial 161 is degenerate both modulo r and modulo
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s, we would next examine

y2 + a1xy +
a3

r2s2
y = a2x

2 +
a4

r2s2
x+

a6

r4s4
. (162)

By the same argument there would be a single element x0 such that (x0, y0)
reduces to the double point modulo r and modulo s. We then translate x by
−r2s2x0 and y by −r2s2y0 Now all further translations of of x and y must
be multiples of r3s3.

We repeat the process as long as the polynomial is degenerate modulo r or
modulo s. As in the previous case, we stop dividing by r or s once the quadric
is not singular. The same argument works for any number of parameters ri

and si.

11.2.2 a2 Group

The group contains a variety of different reduction types. It contains mem-
bers of the Kn family, members of the In family, and members of the I∗n
family. For every reduction type in this group we have v(a1) ≥ 1. This
means in particular that a member of the In family in this group must have
a residue field of characteristic 0. To simplify the discussion in this section,
we may include the reduction types Tn in the I∗n family, and the reduction
types K ′

n in the Kn family.

In addition to the fact that every reduction type in this group has v(a1) ≥ 1,
also know that for the Kn or In types we have v(a2) = 0, and for members
of the I∗n family we have v(a2) = 1.

We recall that to translate to chart form in the case of an elliptic scheme
over a DVR R with uniformizer π we just needed to translate by the possible
singularities of quadratics of the form

y2 + a1xy +
a3

π
y = a2x

2 +
a4

π
x+

a6

π2
(163)

in the case of a type In, by a rational points of double lines such as

y2 = a2x
2 +

a6

π2
(164)
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in the case of a type Kn, and by double roots of the quadratic polynomials

y2 +
a3

π2
y −

a6

π4
(165)

a2

π
x2 +

a4

π3
x+

a6

π5
(166)

for members of the I∗n family.

Because b2 = a2
1 + 4a2 is a unit, if the quadric is singular it consists of two

intersecting lines. In fact we can solve for the coordinates of this point of
intersection with equations 33 and 34.

We now perform the analysis when dealing with a local ring O.

Let {ri} be a the subset of the {ti} such that f has a reduction type In over
Ri, and {si} be a the subset of the {ti} such that f has a reduction type
Kn or K ′

n over Ri and {pi} be a the subset of the {ti} such that f has a
reduction type I∗n or Tn over Ri.

Then for each ri and si we have vi(a2) = 0, vi(a3) ≥ 1, vi(a4) ≥ 1, and
vi(a6) ≥ 1 and for each pi we have vi(a2) = 1, vi(a3) ≥ 2, vi(a4) ≥ 3,
and vi(a6) ≥ 4. In the discussion which follows I will use only one index
r = ri, one index s = si, and one index p = pi but the argument is the same
regardless of the number of indices present in the sets.

Since f is already in pre-chart form, we must ensure that all further transla-
tions of x and of y are multiples of rsp2. There are four types of translations
that must be performed in sequence. This sequence is repeated as many
times as necessary. In step 1 we consider the polynomial

y2 + a1xy +
a3

rsp2
y =

a2

p
x2 +

a4

rsp3
x+

a6

r2s2p4
. (167)

Note that a2

p
is a unit in O. We will use this fact to conclude that a2 is not

a square in the residue fields modulo r or modulo s.

If this polynomial defines a degenerate quadric modulo r we must translate
the singular point to (0, 0). We may use equations 46 and 47 to find the
coordinates of the singular point, and by these equations we remark that
these values of x and y can be lifted to an O integral elements. If there were
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more than one element ri in the analysis we could find a a single element x0

and a a single element y0 and perform one translation. We then translate
x by −rsp2x0 and y by −rsp2y0 Now all further translations of of x and y
must be multiples of r2sp2.

In step 2 we consider the polynomial

y2 = a2x
2 +

a6

r2s2p4
(168)

If this defines a double line modulo s with a rational point (x0, y0) we need
to translate it to (0, 0). Because of the previous step a6

r2s2p4 is zero modulo r

Given such a point (x0, y0), we use the fact that a2 is not a square modulo s to
conclude that both x0 and y0 can be lifted to O integral values. Furthermore
since the constant term of the quadratic is zero modulo r, we have modulo r

y2
0 = a2x

2
0 (169)

Now since a2 is not a square modulo r, we then also conclude that x0 and y0

are zero modulo r. We then translate x by −rsp2x0 and y by −rsp2y0. By
the last comment these translations were indeed multiples of r2sp2. Now all
further translations of of x and y must be multiples of r2s2p2.

In step 3 we consider the polynomial

y2 +
a3

rsp2
y −

a6

r2s2p4
(170)

If this polynomial is zero modulo p, we will need to perform a y translation so
that this member of the I∗n family will be in chart form. We notice that both
the linear and constant term are zero modulo r and modulo s. Because this
polynomial is monic with integral coefficients we see that any such double
root can be lifted to an O integral element y0 which is zero modulo r and
modulo s. We then translate y by −rsp2y0. By the last comment this
translation is indeed a multiple of r2s2p2. Now all further translations of of
y must be a multiple of r2s2p3.

In step 4 we consider the polynomial

a2

p
x2 +

a4

rsp3
x

a6

r2s2p5
(171)
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If this polynomial is zero modulo p, we will again need to perform an x
translation so that this member of the I∗n family will be in chart form. We
notice that both the linear and constant term are zero modulo r and modulo
s. Because this polynomial has leading coefficient a2

p
, which is a unit in O,

and also has integral coefficients we see that any such double root can be
lifted to an O integral element x0 which is zero modulo r and modulo s.

We then translate x by −rsp2x0. By the last comment this translation is
indeed a multiple of r2s2p2. Now all further translations of of x must also be
a multiple of r2s2p3.

At this point we repeat the four step process as many times as needed. At
each stage we remove an extra power of r, s, or p from each of a3 and a4, and
two such powers from a6. Of course once the quadratic 167 is non singular
modulo r we no longer remove a powers of r. And once the quadratic 168 is
not a double line modulo s we no longer remove a powers of s. And once the
polynomials 169 and 170 have no double roots modulo p we no longer remove
a powers of p. The same argument works for any number of parameters ri,
si, and pi.

For example, supposing we did perform a translation in each of the steps
above, we would begin the next stage by examining the polynomial

y2 + a1xy +
a3

r2s2p3
y =

a2

p
x2 +

a4

r2s2p4
x+

a6

r4s4p6
(172)

and check if it defines a degenerate quadratic modulo r.

11.3 Conclusion

Thus we conclude that if all of our reduction types are members of the a1

group, the a1− a2 group , or the a2 group, we can find a single O translation
for x and a single O translation for y, that puts the Weierstrass equation f
can be put into multiple chart form. This concludes the sketch of the proof
of proposition 11.1.

This strengthens our result of multiple pre-chart form under the pre-settled
hypothesis. This will allow us to refine the groups associated to the fami-
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lies of reduction types. By defining the notions of a wild and tame part of
the discriminant and the notion of settled, we will be able to further limit
collisions in among the types in the families.

Reducing the number of types of possible collisions puts us in the favorable
situation where the type of exceptional divisor of all blow ups of the base is
uniquely determined by the reduction types involved in the collision. We will
then apply a combinatoric argument in section 14 to further limit ourselves
to a small list of collisions. These will eventually be analyzed individually in
section 16.

We now turn toward the definition of a settled elliptic scheme and explore
the ramifications of such a further hypothesis.
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12 A Settled Base

12.1 Tame and Wild Discriminant

To provide a refinement of the notion of a pre-settled scheme and to refine the
groups described in section 10 we will introduce the notion of a settled point
in the base. Somewhat analogous to the notion of pre-settled, the notion
of settled is also one the locally relates the valuation of the discriminant d
at each of the DVRs Ri, to that of the valuation of d in the DVR of the
exceptional divisor defined by a blow up.

We are going to use the conductor of an elliptic curve as motivation for a
definition of the wild part of the discriminant. We recall that in the situation
of an elliptic scheme over a DVR of characteristic zero the valuation of the
discriminant can be determined just by knowing the reduction type. In
fact, if the elliptic curve has additive reduction, Ogg’s formula [SIL 2] says
v(d) = 1 + c where c is the number of components in the special fiber. If we
are in residue characteristic 2 or 3, and have one of the standard Kodaira
types, Ogg’s formula also says v(d) = t+ w − 1, where t is the tame part of
the conductor, and w is the wild part. Using this terminology as motivation,
the definition of tame part of the discriminant will be equivalent to

tame(E) = v(d)− w(d). (173)

for the standard Kodaira reduction types.

More formally, the tame and wild parts of the discriminant will be defined
in an analogous way to the way that the straight and residual parts of the
discriminant were defined.

Definition 12.1 (Tame Part of d, Char 2)
Let E be a Weierstrass elliptic scheme defined over a DVR R defined by
a Weierstrass equation f in in chart form. Define the Tame Part of the
Discriminant Tame(E) to be the minimum of the valuations of the elements

a2
6 a3

4 a4
3 a3

2a6 a2
2a

2
4 a3

2a
2
3 a6

1a6 a4
1a

2
4 a3

1a
3
3. (174)
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If the characteristic of the residue field is not 2, we can replace the list of
elements with a shorter one

a2
6 a3

4 a3
2a6 a2

2a
2
4. (175)

We make two observations. If the reduction type is not a member of one of
the infinite families, the tame part of the discriminant is equal to the straight
part of the discriminant. Also if the reduction type is a standard Kodaira
type, then the tame part of the discriminant is equal to the entire valuation
of the discriminant. That is, for the old reduction types tame(E) = v(d),
and the new types have the following values for tame(E).

New Type Char tame(E)
Z1 3 0
Z2 3 6
X1 2 0
X2 2 6
Y 1 2 0
Y 2 2 4
Y 3 2 8

Kn n odd 2 n
Kn n even 2 n
K ′

n n even 2 n
Tn 2 6 + n

(176)

We are also going to define a wild part of the discriminant

Definition 12.2 (Wild Part of d)
Let E be a Weierstrass elliptic scheme defined over a DVR R. Then define
the Wild Part of the Discriminant by

wild(E) = v(d)− tame(E) (177)

When we have an elliptic scheme defined over a higher dimensional local ring
O, we define these measures for each DVR Ri as follows.

103



Definition 12.3 (Indexed Tame and Wild Parts)
Let E be a Weierstrass elliptic scheme defined over a regular n dimensional
local ring O. Suppose {ti} is a discriminant compatible set of uniformiz-
ing parameters for O. Then for each i we consider Ei over Ri and define
tamei(E) = tame(Ei), and wildi(E) = wild(Ei) .

Clearly for all i,
wildi(E) = vi(d)− tamei(E). (178)

As in the section defining the straight and residual parts of the discriminant,
we may need to replace our Weierstrass elliptic scheme with a more minimal
one. Thus tame(E) is also only defined modulo 12, and we choose for conve-
nience to deal with wild(E), which does not change when passing to a more
minimal scheme.

The terminology was chosen because the integer wild(E) corresponds to the
wild part of the conductor in case we have on of the standard Kodaira types.

12.2 Settled Fault Integer

We define the notion of pre-settled to obtain the property that if two or more
reduction types in the same group collide and we blow up the base at the
intersection of the two components, the exceptional divisor has a reduction
type in the same group. We will strengthen the notion of a nice collision so
that the type of the exceptional divisor will be even more precisely described.

With the definition of the tame and wild part above, these nice collisions
have the property that after a blow up and before replacing the Weierstrass
equation with a more minimal one, the following measures in Re of the dis-
criminant are related to the same measures in the DVRs Ri as follows.

ve(d) =
k

∑

j=1

vj(d) (179)
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tamee(E) =
k

∑

j=1

tamej(d) (180)

wilde(E) =
k

∑

j=1

wildj(d) (181)

We now define a measure of the failure of the relations 180 and 181.

Definition 12.4 (Settled Fault Integer)
Let E be a Weierstrass elliptic scheme defined over a regular n dimensional
local ring O. Suppose {ti} is a discriminant compatible set of uniformizing
parameters for O. Let B → Spec(O) be the blowing up at the ideal (t1, ...tl),
and let ve be the valuation associated to exceptional divisor. Then we define
The Settled Blowup Fault at O to be the difference

Fault(E) = wilde(E)−
l

∑

j=1

wildj(E) (182)

Define SettledFaultp(E) at Op to be the maximum over all such blowups.

I remark that the maximum can be reached by blowing up at the closed point
of O.

12.3 Defining Settled

A point in the base B is settled if the wild part of the discriminant is additive.
Equivalently there is no Settled Fault at p.

Definition 12.5 (Settled)
Let X → B be a Weierstrass elliptic scheme defined over B. Let pεB. We
say X → B is Settled at p if SettledFaultp(d) = 0. An elliptic scheme is
Settled if it is settled at every point in the base.
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This notion complements the notion of pre-settled by further limiting the
types of collisions within groups involving the infinite families of reduction
types. It further forces the appropriate ai to be {ti} normal elements, and
elliminates other spot singularities. Combined with the pre-settled assump-
tion, it makes the reduction types of the exceptional divisor in a blow up
completely predictable.

12.4 Use of Rational Maps

In this section we are going to define some rational maps. In the settled
case these will turn out to be morphisms. By considering the fibers of the
morphism, we will have a more precise and general definition of the groups
of reduction types. So for each p in the base Let Op be the local ring at p,
and define a rational map from Op to P 2(Op) as follows.

Definition 12.6 (Rational Maps)
Let E be a Weierstrass elliptic scheme defined by a Weierstrass equation f
over a regular n dimensional local ring Op. Suppose that f is in multiple
chart form. Define rational maps by

φ1(p) = (a6
1a6, a

4
1a

2
4, a

3
1a

3
3) (183)

φ2(p) = (a3
2a6, a

2
2a

2
4, a

3
2a

2
3). (184)

Note that ψ is only defined locally and depends on the Weierstrass equation
f . We are only going to consider the above rational maps maps at points
of the base corresponding to the groups where either a1 or a2 is a unit. If
fact we can limit the definition of φ1 to points of the base with a1 a unit,
and we can limit the definition of φ2 to points of the base with a2 a unit. If
we assume that our Weierstrass equation f is in chart form, the subschemes
a1 6= 0 and a2 6= 0 of the base are well defined even though a1 and a2 vary
with translations.

As with the rational map ψ, we compute the values of the rational maps in
the settled case. I modify the argument of section 10.7 to show that φ1 and
φ2 are also morphisms.
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Let {ti} be a set of discriminant compatable unformizing parameters for Op.
For each index i cancel out the highest power of ti in the definitions of φ1

and, φ2. For each index i this highest power is equal to the tame part of the
discriminant in the DVR Ri.

Supposing, that after this division, one of the components in the definition of
φ1 or φ2 is a unit. Then the rational map is well defined at p, and the value
φ1(p) or φ2(p) is just given by the reduction of the reduced components to
the residue field of Op.

Now suppose that after that division every component of φ1 or φ2 is still
in the maximal ideal of Op. Then we consider blowing up the base at the
maximal ideal of Op, and choose any point q on the exceptional divisor. Let
t be the uniformizer corresponding to the exceptional divisor. Note that φ1

or φ2 can be defined on the whole blow up of Op.

When we consider φ1 or φ2 in one of the coordinate patches of the blow up,
we see that one power of t can be factored out of the five-tuple defining φ1

or φ2 for each power of ti that was previously factored out, plus at least one
extra power of t.

This is because by equation 133 the valuation of an xεOp at t corresponds to
the highest power of the maximal ideal that contains x.

In other words, before possibly replacing the Weierstrass equation with a
more minimal one,

tame(E) >
k

∑

j=1

tamej(d) (185)

Or equivalently

wild(E) <
k

∑

j=1

wildj(d). (186)

This violates the settled condition, and is thus a contradition.

This analysis gives us the following

Proposition 12.7 (Rational Maps are Morphisms)
Let E be a Weierstrass elliptic scheme defined over B Suppose the elliptic
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scheme is pre-settled and settled. Then ψ is a morphism. At points of B
where the first component of ψ is a unit, φ1 is also a morphism. At points
of B where the second component of ψ is a unit, φ2 is also a morphism.

So we conclude that the local rational maps are well defined morphisms.
Next we will consider fibers of these morphisms to give a better description
of what reduction types can collide in the settled case.

12.5 Fibers of the Morphisms

12.5.1 a1 is a unit

The analysis of this subsection applies only when the local ring O has residue
characteristic 2. At points of B where ψ(p) has a unit value in the first
component, we consider the morphism φ1 and we could make a chart of
which types arise over the various fibers of φ1. I omit this chart, because the
only types which do arise regardless of the value of φ1 are the types In. The
chart would only serve to indicate the valuations of a3, a4, and a6, and state
which would be forced to be {ti} normal elements. This would be useful in
ultimitely proving regularity at the point of collision.

Even without such an analysis we can see that because the discriminant has
normal crossings, and the In types have no wild part of the discriminant that
the map φ1 would be forced to be a morphism even in the absence of the
settled hypothesis. Furthermore, if we blow up the base at a collision of In

types, The exceptional divisor is always of type In′ where n′ is just the sum
of the n’s.

I reserve a more careful analysis of the fibers to the following case where
more interesting phenomenon arise.

12.5.2 a2 is a unit

In this section we assume that ψ(p) has a unit value in the second component,
and is zero in the first component. If a1 and a2 are are both units we can refer
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to the previous section. We now make a chart of the fibers of the morphism
φ2 which tells us what reduction types can be present over points with a
specific value of φ2.

Proposition 12.8 (Settled Collision Families in Char 2)
Let E be a pre-settled and settled elliptic scheme defined by a Weierstrass
equation f over a local ring Op of residue characteristic 2. Let {ti} be a
discriminant compatible set of uniformizing parameters for Op. Suppose the
second component of ψ is a unit but the first component of ψ is zero. Then if
φ2(p) is as in the first column of Chart 187, the only possible reduction types
Ti over each Ri are as in the second column of Chart 187. Furthermore the
the ai mentioned in the third column must be {ti} normal elements in Op.

φ2(p) Types ai normal
(∗, 0, 0) I2n, K2n, I

∗

2n+1 a3

(0, ∗, 0) I2n, K2n, I
∗

2n a4

(0, 0, ∗) In, K2n+1, K
′

n, Tn, I
∗

n a6

(∗, ∗, 0) I2n, K2n a3, a4

(0, ∗, ∗) I2n, K2n, I
∗

2n a4, a6

(∗, 0, ∗) I2n, K2n, I
∗

2n+1 a3, a6

(∗, ∗, ∗) I2n, K2n a3, a4, a6

(187)

The In types must all have residue characteristic 0, and the I∗n types in the
a6 group here must also have residue characteristic 0.

12.6 Notes

The results of this section are really only used to describe the collisions in
the families of reduction types. If the elliptic scheme had no such reduction
types appearing we could drop the settled hypothesis.

Although the pre-settled hypothesis already prevents collision between the
groups described in section 10, the settled hypothesis further restricts the
types of collisions among reduction types in the infinite families.
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Specifically we take a collision of the form in Chart 187 and apply Tate’s
algorithm to each component of the discriminant locus. The fact that one or
more of a3, a4, and a6, are {ti} normal elements guarantees that that in the
last blow up of section 16.8, the elements a′j obtained from the aj by dividing
out by powers of ti are units. This proves that all points in the total space
X lying above the collision point p are regular.
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13 Stability of Settled Schemes

13.1 Special Weierstrass Form

We use the pre-settled and settled assumptions via the local morphisms ψ,
φ1, and φ2 to severely restrict the form of the Weierstrass equation. In this
section we explore the ramifications of such a restricted Weierstrass equation.
In particular we define the modulus of a collision and assign integer invariants
to the components of the discriminant locus. These integers will be use later
in the combinatorial arguments of section 14. We also show that after a
blow up of the base, the derived Weierstrass equations are automatically in
chart form. Finally, we show that the Weierstrass elliptic scheme obtained
by pulling back to the new base is also pre-settled and settled.

We have defined the groups of reduction types in definitions 10.2 and 10.3
and secondly by the fibers of the morphisms ψ. With the pre-settled assump-
tion, proposition 10.13 reduces to the case of collision of reduction types in
the same group. Furthermore, for each such group one or more of the ai are
{ti} normal elements. If ai is a {ti} normal element, its valuation is addi-
tive in blow ups. This is useful because with enough information about the
valuations of the ai’s we can use the charts to determine what the reduction
type the exceptional divisor is.

We start with a settled and pre-settled Weierstrass elliptic scheme and sup-
pose the Weierstrass equations is locally in chart form. After each blow up
of the base we pull back the Weierstrass equation to the new base. We will
see that the assumptions of settled and pre-settled guarantee that no further
translations will be needed to put the new Weierstrass equations in chart
form. We may, however need to replace the Weierstrass elliptic scheme with
a more minimal one as in section 8.6. We construct this minimal scheme
when ti divides ai for i = {1, 2, 3, 4, 6}. For this reason the combinatorial
arguments in section 14 consider the addition of the valuations of the ai

modulo one of these integers.
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13.2 Mod n Collision Addition

We now consider settled and pre-settled Weierstrass elliptic schemes locally in
order to assign integer invariants to the reduction types and to the collisions.
Suppose the elliptic scheme is defined at p by a Weierstrass equation f in
chart form with respect to a discriminant compatible set of uniformizing
parameters {ti}. By considering the fibers of the morphisms ψ, we know that
the reduction type of each component in the discriminant divisor belongs to
the same group. We refer to chart 153 or 154 to determine which ai are forced
to be {ti} normal elements. Suppose m is the greatest common divisor of
these indices. We assign the integer v(am) to each reduction type in the
discriminant locus that passes through p, and will be performing addition
modulo m on these components. We now formalize this assignment.

Definition 13.1 (Modulus of Collision)
Let E be a pre-settled and settled elliptic scheme defined by a Weierstrass
equation f over a local ring O. Let {ti} be a discriminant compatible set of
uniformizing parameters for O, and suppose f is in multiple chart form. As
specified in Chart 153, Chart 154, some of the ai are forced to be {ti} nor-
mal elements. Define the Modulus of a Collision to be the greatest common
divisor of these indices i. Denote this index by m.

As mentioned in relation 144, the vector (v(a1), v(a2), v(a3), v(a4), v(a6)) is
considered modulo the vector (1, 2, 3, 4, 6). On way to interpret v(am) is via
its simple relationship to the straight part of the discriminant.

Proposition 13.2 (Straight Discriminant)
Let E be a pre-settled elliptic scheme defined by a Weierstrass equation f
over a local ring Op. Let {ti} be a discriminant compatible set of uniformizing
parameters for Op, and suppose f is in multiple chart form. Let m be the
modulus of a collision at p. Then the straight parts of the discriminant are
determined by am.

straighti(E) = vi(am)
12

m
. (188)
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The proof follows from the definition of the straight part of the discriminant
and the charts in section 4.

We prefer to phrase our arguments in terms of v(am) rather than straight(E),
so we now consider how the integer v(am) behaves in blow ups.

Proposition 13.3 (Collision Arithmetic)
Let E be a pre-settled elliptic scheme defined by a Weierstrass equation f
over a local ring O. Let {ti} be a discriminant compatible set of uniformizing
parameters for O, and suppose f is in multiple chart form. Let m be the
modulus of the collision at p. Let B → Spec(O) be the blowing up at an ideal
(t1, ...tl). Let ve be the exceptional valuation. After reducing the Weierstrass
equation to a minimal one we have

ve(am) =
i=l
∑

i=1

vi(am) mod m. (189)

To prove that the two integers in 13.3 are equal before reducing modulo m,
we just remark that am is a {ti} normal element and apply relation 136.

However, we can be more explicit and show ve(am)ε{0, ...,m − 1} by exam-
ining the valuations of the ai after a blow up, and consider what happens
when passing to a minimal scheme. Because am is a {ti} normal element, we
know the exact form of am in O.

am = α
k=n
∏

k=1

tek

k . (190)

Here α is a unit in O, and ek is just the valuation vk(am).

ek = vk(am) =
m

12
straightk(E). (191)

In fact, before passing to a minimal scheme, all coefficients of the Weierstrass
equation satisfy

ve(ai) ≥
k=l
∑

k=1

vk(ai) ≥
i

12
straighte(E). (192)
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This follows from relation 9.6 and the definition of straighte(E). Thus for
all i we have the inequality

ve(am)

m
≤
ve(ai)

i
. (193)

This means that after we reduce the vector of valuations

(v(a1), v(a2), v(a3), v(a4), v(a6))

modulo the vector (1, 2, 3, 4, 6) as in section 8.6, we have v(am) < m. This
completes the proof of proposition 13.3.

In particular if we are blowing up the base at the intersection of two hyper-
surfaces H1 and H2 defined by the ideal (t1, t2) then the valuation of am in
the exceptional divisor is just

ve(am) = v1(am) + v2(am) mod m. (194)

And if we are blowing up the base at the intersection of three hypersurfaces
H1, H2 and H3 defined by the ideal (t1, t2, t3) then the valuation of am in the
exceptional divisor is just

ve(am) = v1(am) + v2(am) + v3(am) mod m. (195)

We also assign these integer invariants v(am) to the components of the dis-
criminant divisor involved in a collision.

For example, consider a local ring Op and suppose ψ(p) = (0, 0, 0, 0, 1). By
chart 154, each reduction type at such a point p must be in the a6 group, and
the modulus of the collision is 6. Then we assign an integer between 0 and
5 to each reduction type in the collision depending on the valuation v(a6).
We formalize this idea with a definition, and in particular make a distinction
between types which have v(am) = 0 and the other types.

Definition 13.4 (Zero and Main Types)
Let E be a pre-settled and settled elliptic scheme defined by a Weierstrass
equation f over a regular local ring Op. Let {ti} be a discriminant compatible
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set of uniformizing parameters for O and suppose f is in multiple chart form.
Let m be the modulus of the collision at p. Let Ti be the reduction type of the
elliptic schemes Ei over Ri. A reduction type Ti is called a Zero Type in the
collision if vi(am) = 0, and a Main Type in the collision if vi(am) > 0. We
also call Ti an N Type if vi(am) = N .

Notice that although vi(am) is assigned a-priori to a component of the dis-
criminant divisor in an elliptic scheme over a local ring, this integer may
be assigned to a whole component of the discriminant divisor in well defined
manner. This is because of the well behaved theory of divisors on the base. In
other words, the divisor (am) on a non-local base has fixed order of vanishing
along each component of the discriminant divisor.

13.3 Stability of Chart Form

Before we systematically blow up at the intersection of two and three hy-
persurfaces, we must guarantee that we can continue to use proposition 13.3
after a blow up. That is, we need the conditions of the proposition to hold
for points in the exceptional divisor of a blow up.

We first set up notation to consider blowing up the base at a local ring.
Suppose E be an elliptic scheme defined by a Weierstrass equation f over
a regular local ring O. Let B → O be a blow up and O′

p be a local ring in
the exceptional divisor. We have already mentioned in proposition 9.5 that
we can easily obtain uniformizing parameters for O′

p from the {ti}. We now
remark that as the Weierstrass equation is pulled back to O′

p it remains in
chart form with respect to the new uniformizing parameters.

Proposition 13.5 (Stability of Chart Form)
Let E be a pre-settled elliptic scheme defined by a Weierstrass equation f
over a regular local ring O. Let {ti} be a discriminant compatible set of
uniformizing parameters for O, and suppose f is in multiple chart form. Let
B → Spec(O) be the blowing up at an ideal (t1, ...tl). Let O′

p be a local ring of
B with a discriminant compatible set of uniformizing parameters ui obtained
as in proposition 9.5. Then the Weierstrass equation f ′ obtained by pulling
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back f to O′

p is in pre-chart form. If we assume also that E is settled elliptic
scheme then f ′ is in full chart form.

To prove this we need only to check that the elliptic scheme over Re obtained
by localizing at the exceptional divisor is in pre-chart or chart form.

I sketch a proof. To show that f ′ is in pre chart form, we need to check that
the pattern of the valuations ve(ai) is as for one of the types on a chart in
section 4. To understand the pattern of the valuations ve(ai) we can use the
morphism ψ. We pull back the morphism ψ defined on O to B. Thus ψ
is constant on the exceptional divisor of the blow up. We then consider ψ
on the generic point on the exceptional divisor to obtain inequalities on the
ve(ai). These inequalities are of the same form as 192, and force the ve(ai) to
lie in one of the patterns on chart 4.2, 4.9, or 4.6 depending on the residue
characteristic of O. The remaining polynomial conditions, and conditions
stating that an an element is not a perfect square or cube can be checked
case by case.

To show that f ′ is in full chart form, we use the morphism φ1 or φ2 in the
same way. It also pulls back to B and forces the ve(ai) to fall in a pattern of
one of the sub charts 4.3, 4.4, 4.5, 4.7, or 4.8. Again the remaining conditions
can be checked case by case.

Another way to intuitively understand proposition 13.5 is to assume that f ′

requires a translation in order to be in pre-chart form. Such a translation
shows that

ve(am) =
n

∑

i=1

vi(am). (196)

Because the vi(am) are linearly related to the straight part of the discriminant
as in proposition 13.2, Straighte(E) is too large, and violates the pre-settled
assumption. Similarly, if f is in chart form, other coefficients are also forced
to be {ti} normal as specified in section 12.5. We can relate the tame part
of the discriminant to these valuations. A potential translation in this case
would cause Tamee(E) to be too large, and thus violate the settled assump-
tion.

Not only will we be able to repeatedly use proposition 13.3 after a blow up,
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but proposition 13.6 also shows us that the reduction type of the exceptional
divisor is almost completely determined.

Corollary 13.6 (Exceptional Type Determined)
Let E be a pre-settled and settled Weierstrass elliptic scheme defined over a
regular local ring O. Let {ti} be a discriminant compatible set of uniformizing
parameters for O. Suppose each Ei has reduction type Ti. Then the reduction
type of the exceptional divisor Te is determined by the reduction types Ti up
to the ambiguity described in the list 197.

Proof. Because E is pre-settled, we already know that the reduction type of
the exceptional divisor is in the same group as the type each component in
the collision. Also, because E is pre-settled, we can describe it with a Weier-
strass equation in chart form, and use relation 192 to calculate equalities or
inequalities on the ve(ai). In particular, if m is the modulus of the collision,
we know the exact valuation v(am). This determines the exceptional divisor
up to ambiguity in the following sets of reduction types:

{In, Kn, K
′n}

{I∗n, Tn}
{I0, X1, Y 1, Z1}
{IV, Y 2}
{I∗0 , Z2, X2}
{IV ∗, Y 3}.

(197)

This theorem can be significantly strengthened because we can usually de-
termine the exact type by considering the residual or wild part of the dis-
criminant, or by using the fibers of the morphisms φ, ψ1, or ψ2.

We need one more proposition before we can apply proposition 13.3 to a
series of blow ups and calculate the valuation ve(am), and reduction type of
the exceptional divisor with corollary 13.6. We need to know that our elliptic
scheme remains pre-settled and settled after each blow up.

Proposition 13.7 (Stability of Settled)
Let E be a pre-settled elliptic scheme defined by a Weierstrass equation f
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over a regular local ring O. Let {ti} be a discriminant compatible set of
uniformizing parameters for O, and suppose f is in multiple chart form. Let
B → Spec(O) be the blowing up at an ideal (t1, ...tl). Let E ′ be the minimal
Weierstrass elliptic scheme obtained by pulling back E to B. Then E ′ is a
pre settled elliptic scheme. If we assume also that E is settled elliptic scheme
then E is also a settled elliptic scheme.

Sketch of Proof: Let O′

p be a local ring of B with a discriminant compatible
set of uniformizing parameters ui obtained as in proposition 9.5. Then by 13.5
the Weierstrass equation f ′ obtained by pulling back f to O′

p is in multiple
pre-chart form (respectively multiple chart form). We also know that am is
a ui normal element and if f is in multiple chart form some of the other aj’s
are also ui normal elements. Consider any further blow up at O′

p. In any
local ring of this second exceptional divisor we can create a new Weierstrass
equation f ′′ which is automatically by proposition 13.5 in multiple chart form.
Because am is a ui normal element we can compute the exceptional straight
and tame parts of the discriminant just by looking at the chart. We then
conclude that Fault(p′) = 0 (respectively SettledFault(p′) = 0). This is
true for any second blow up of O′

p, so E ′ is indeed a pre-settled, (respectively
settled) Weierstrass elliptic scheme.

13.4 Summary of Settled Elliptic Schemes

We summarize the nice properties that pre-settled and settled Weierstrass
elliptic schemes have. First, there are only collisions between reduction types
in the same group. The Weierstrass equations defining them remain in chart
form, after being pulled back via a blow up. The minimal Weierstrass elliptic
schemes derived from the blow up are themselves pre-settled and settled
elliptic schemes. Also the reduction type of the exceptional divisor is almost
uniquely determined. Lastly, and important for the following sections, we
can assign each component of the discriminant divisor an integer v(am) that
is additive in blow ups.

We are now ready to algorithmically blow up the base of our elliptic scheme.
After the combinatorial arguments involving ve(am), we will make charts
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198 and 200 of all remaining collisions that need to be considered in the
desingularization of the total space.
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14 Combinatorial Reductions

14.1 Finiteness Considerations

In this subsection we provide an algorithm to further limit collisions of re-
duction types. An elliptic scheme constructed with this algorithm will be
called a Limited Weierstrass Elliptic Scheme. In section 16, we will be able
to desingularize a Limited Weierstrass Elliptic Scheme.

All blowups will be along subschemes defined or two of three components of
the discriminant locus. This defines a sheaf of ideals on B for the blow up.
Locally, these blow ups will be at ideals such as (t1, t2) or (t1, t2, t3) where
the ti = 0 are components of the discriminant divisor at a point pεB.

We will simply describe the blow ups by indicating at the intersection of
which hypersurface Hi we are blowing up at, and we will analyze the results
locally. These algorithms will take place in stages: one stage for each possible
modulus of the collisions. For each integer mε{1, 2, 3, 4, 6} we define a subset
of the the components of the discriminant locus.

Definition 14.1 Let S(m) to be the set of hypersurfaces H in the discrim-
inant locus such there exists a point pεH with modulus(p) = m. Call this
subset of components The Net of Modulus m Components .

Because B is Noetherian, there are only a finite number of components of
the discriminant divisor, and thus S(m) is also finite.

To be concrete, perform the algorithms in section 14.2 for the nets of modu-
lus m components in the following order: S(6), S(4), S(3), S(2), S(1). This
order could a-priori matter because two meeting components of the discrim-
inant locus could be in more than one net S(m).
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14.2 Combinatorial Arguments

14.2.1 Modulus 1

In this section we consider blow ups defined by hypersurfaces H in the net of
modulus 1 component, S(1). Each such hypersurface contains a point pεH
of collision modulus 1.

Referring to chart 154, we see that the only possible reduction types are the
In types. Although all types are trivially zero types, we still perform some
blow ups.

Suppose there is a collision of reduction types In and Im with both n and
m odd. Blow up at the intersection of these two hypersurfaces on the base.
Then the exceptional divisor is of type In+m. Thus we have eliminated a col-
lision between two odd In types, and we have created no new such collisions.
Repeat this blow up for each such pair of reduction types. There are only
a finite number of components in the entire discriminant locus, only a finite
number of blow ups are required for this operation.

We have reduced the modulus 1 collisions to collisions between In types with
at most one odd n.

14.2.2 Modulus 2

In this section we consider blow ups defined by hypersurfaces H in the net of
modulus 2 component, S(2). Each such hypersurface contains a point pεH
of collision modulus 2.

Referring to charts 153 and 154, we see that the only possible zero types are
I0, In, Kn, X1, and Y 1 . The only possible 1 types are I∗0 ,I∗n, X2, and Tn.

Step 1: Blow up at the intersection of any two 1 types. Then in a collision
at most one 1 type can exist.

Step 2: Suppose there is an intersection between a type In or Kn, and a
second Im or Km with both m and n odd.
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Then all collisions involve at most one 1 type, and among collisions of only
zero types, at most one odd indexed In or Kn type appears.

14.2.3 Modulus 3

In this section we consider blow ups defined by hypersurfaces H in the net of
modulus 3 component, S(3). Each such hypersurface contains a point pεH
of collision modulus 3.

Referring to charts 154, we see that the only possible zero type is I0. The
only possible 1 type is IV . The only possible 2 type is IV ∗.

Step 1: Blow up at the intersection of any two 1-types. This eliminates all
(1, 1) intersections, creating new (1, 2) intersections, and possible (2, 2) in-
tersections if the (1, 1) intersection specializes to a (1, 1, 2) triple intersection
for some pεB.

Step 2: Blow up at any (1, 2) intersections. The exceptional divisor is a zero
type, so this eliminates all collisions involving a 1 type. The only collisions
that remain are collisions among some number of 2 types.

Step 3: Blow up at any triple (2, 2, 2) intersections. The exceptional divisor
is a zero type, so no new collisions are created. There remain only double
(2, 2) intersections, and no triple intersections.

Step 4: Blow up at the intersection of any two 2-types. This eliminates all
(2, 2) intersections, but creates only new (1, 2) intersections.

Step 5: Blow up at any of the new (1, 2) intersections. The exceptional
divisor is a zero type, so this eliminates all collisions involving a 2 type.

Then there are no collisions which involve more than 1 main type, and the
only zero type is I0. Effectively all collisions have been eliminated.

An alternative algorithm blows ups sequentially at the following types of
intersections: (1, 2), (2, 2, 2), (1, 1, 1), (1, 1), (2, 2), (1, 2). We omit further
details.
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14.2.4 Modulus 4

In this section we consider blow ups defined by hypersurfaces H in the net of
modulus 4 component, S(4). Each such hypersurface contains a point pεH
of collision modulus 4.

Referring to charts 153 and 154, we see that the only possible zero types are
I0, X1, and Z1. The only possible 1 type is III. The only possible 2 types
are I∗0 , X2 and Z2. The only possible 3 type is III∗.

We ignore the zero types that may be present in each collision, but we do
consider them in section 14.4.

Step 1: Eliminate (3, 3) intersections. New (2, 3) intersections are created,
Possible new (1, 2) and (2, 2) intersections are created.

Step 2: Eliminate (2, 3) intersections. New (1, 3) and (1, 2) intersections are
created, Possible new (1, 1) intersections are created.

Step 3: Eliminate (1, 3) intersections. No new intersections of main types
are created. Now a 3 type can only collide with zero types.

Step 4: Eliminate (1, 1) intersections. New (1, 2) intersections are created.
Possible new (2, 2) intersections are created.

Step 5: Eliminate (2, 2) intersections. No new intersections of main types
are created.

Now a collision can contain at most two main types, and any number of zero
types. If there are two main types in a collision one is a 1 type and the other
is a 2 type. There also remain collisions between only one main type and
any number of zero types.

14.2.5 Modulus 6

In this section we consider blow ups defined by hypersurfaces H in the net of
modulus 6 component, S(6). Each such hypersurface contains a point pεH
of collision modulus 6.
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Referring to charts 153 and 154, we see that the only possible zero types are
I0,X1,Z1, and Y 1. The only possible 1 type is II. The only possible 2 types
are IV and Y 2. The only possible 3 types are I∗0 , X2 and Z2. The only
possible 4 types are IV ∗ and Y 3. The only possible 5 type is II∗.

We ignore the zero types that may be present in each collision, but we do
consider them in section 14.4.

Step 1: Eliminate (5, 5) intersections. New (5, 4)intersections are created.
Possible new (4, 4), (4, 3), (4, 2) and (4, 1) intersections are created.

Step 2: Eliminate (5, 4) intersections. New (5, 3) and (4, 3) intersections are
created. Possible new (3, 3), (3, 2) and (3, 1) intersections are created.

Step 3: Eliminate (5, 3) intersections. New (5, 2) and (3, 2) intersections are
created. Possible new (2, 2) and (2, 1) intersections are created.

Step 4: Eliminate (5, 2) intersections. New (5, 1) and (2, 1) intersections are
created. Possible new (2, 1) intersections are created.

Step 5: Eliminate (5, 1) intersections. No new intersections are created.

Now 5 types are not involved in any collisions with other main types.

Step 6: Eliminate (4, 4) intersections. New (4, 2) intersections are created.
Possible new (3, 2), (2, 2) and (2, 1) intersections are created.

Step 7: Eliminate (4, 3) intersections. New (4, 1) and (3, 1) intersections are
created. Possible new (2, 1) and (1, 1) intersections are created.

Step 8: Eliminate (4, 2) intersections. No new intersections are created.

Now the only double collisions of main types involving a 4 type are a (4, 1)
collision.

Step 9: Eliminate (4, 1, 1) intersections. The exceptional divisor is a zero
type so no new intersections are created.

Now there are also no 4 types involved in a triple collision.

Step 10: Eliminate (3, 3) intersections. No new intersections are created.
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Step 11: Eliminate (1, 1) intersections. New (2, 1) intersections are created.
Possible new (3, 2) and (2, 2) intersections are created.

Step 12: Eliminate (3, 2, 1) intersections. The exceptional divisor is a zero
type so no new intersections are created.

Step 13: Eliminate (2, 2, 2) intersections. The exceptional divisor is a zero
type so no new intersections are created.

If a 3 type is in a double collision it can only be in a (3, 1) or (3, 2) intersection.
If a 3 type is in a triple collision it must be a (3, 2, 2) intersection. Also a 3
type is in no quadruple collisions.

Step 14: Eliminate (3, 2, 2) intersections. This creates only new (3, 2, 1) and
(2, 2, 1) intersections.

Step 15: Eliminate the new (3, 2, 1) intersections. The exceptional divisor is
a zero type so no new intersections are created.

Now the only collisions of main types involving a 3 type are the (3, 1) and
(3, 2) collisions. Furthermore, we have no triple (2, 2, 2) intersections, and no
(1, 1) intersections.

Step 16: Eliminate (2, 2) intersections. New (4, 2) intersections are created.
Possible (4, 1) and (4, 2, 1) intersections are created, but no other types of
intersections involving a 4 type.

Step 17: Eliminate the new (4, 2) intersections. No new intersections are
created.

There are now no triple intersections at all.

Step 18: Eliminate the (2, 1) intersections. Only new (3, 2) and (3, 1) inter-
sections are created. This step could be considered optional because (2, 1)
collisions are easy to deal with.

Thus there are no triple collisions, and only double collisions of type (4, 1),
(3, 2), or (3, 1) remain. There may also be collisions between one main type
and any additional number of zero types may be present.
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14.3 Independence of Reductions

We now point out that the blowups involved for one S(m) do not interfere
in the blow ups for a following S(m).

Proposition 14.2 (Independence of reductions)
Suppose the blow ups described above are performed for the S(6), S(4), S(3),
S(2), and S(1) sets of components of the hypersurfaces, in that order. Then
the blow ups required for a given set S(m) never involve two meeting hyper-
surfaces in S(m′) with m′ > m.

To prove this we consider the reduction types that are in more than one set
S(m).

The only reduction types that are in the S(6) and S(4) sets are types I∗0 , X2
or Z2. After the S(6) reductions no such two meet. Thus the reductions for
S(4) can never blow up at the intersection of two components in S(6).

After the above reductions, no two IV or IV ∗ types in the S(6) set meet.
Thus when performing the S(3) reductions, no blow up involves two meeting
IV or IV ∗ types in the S(6) set.

The only type in the S(2) set that can be in a set S(3), S(4), or S(6) is type
I∗0 . But after the above reductions, no such two I∗0 types meet. Thus when
performing the S(2) reductions, no blow up involves two meeting I∗0 types if
both are in the S(6) or S(4) set.

Finally after the S(2) reductions no two In types in S(2) collide with both
n’s odd. Thus when performing the S(1) reductions, no blow up involves two
meeting odd In types if both are in the S(2) set.

14.4 Remaining Collisions

We summarize here the results of the mod m arithmetic arguments that limit
collisions with two propositions and charts. If we assume that all reductions
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in the previous section have been made, we have a very special elliptic scheme.
We give a name to such Weierstrass elliptic schemes.

Definition 14.3 (Limited Weierstrass Elliptic Scheme)
Let E be a pre-settled and settled Weierstrass elliptic scheme defined over a
base scheme B. Let B ′ → B be the blow ups described in section 14.2. Let
E ′ → B′ be the minimal Weierstrass elliptic scheme defined by pullback and
the minimal scheme construction in section 8.6. Then E ′ → B′ is called a
Limited Minimal Weierstrass Elliptic Scheme.

14.4.1 Characteristic 6= 2

Here we describe the remaining collisions at points p of B not of residue
characteristic 2.

Proposition 14.4 (Double Collisions in Char 6= 2)
Let E be a Limited Minimal Weierstrass Elliptic Scheme defined over a base
scheme B. Let p be a point of B of residue characteristic 6= 2.

Let ti be a discriminant compatible set of uniformizing parameters at p, so
that E is cut out by a Weierstrass equation f in chart form, and the morphism
ψ is defined at p. Suppose there is a collision at p involving more than one
main type. Then the types involved in such a collision are described in chart
198, where ψ(p) must be as in the first column of the chart.

ψ tiNormal Mod Collision Main Types Zero Types
(0, 1, 0) a4 4 (1, 2) (III, I∗0 )
(0, 0, 1) a6 6 (1, 3) (II, I∗0 ) Z1
(0, 0, 1) a6 6 (1, 3) (II, Z2) Z1
(0, 0, 1) a6 6 (1, 4) (II, IV ∗) Z1
(0, 0, 1) a6 6 (2, 3) (IV, I∗0 ) Z1
(0, 0, 1) a6 6 (2, 3) (IV, Z2) Z1

(198)

We explain the chart further. The first column list the possible values of
ψ(p). If the value of ψ(p) is not in this column, no collision involving more
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than one type occurs at p. The second column indicates which aj is forced
to be a {ti} normal element. The third column gives the modulus m of
the collision. The fourth columns indicates v(am) for the two types in the
collision. Fifth column states what reduction types these v(am) types can
correspond to, and the last column indicates the type of possible further zero
types in the collision.

All other collisions not covered by proposition 198 include at most one main
type.

Proposition 14.5 (Single Collisions in Char 6= 2)
Let E be a Limited Minimal Weierstrass Elliptic Scheme defined over a base
scheme B. Let p be a point of B of residue characteristic 6= 2. Let {ti}
be discriminant compatible set of uniformizing parameters at p, so that E is
cut out by a Weierstrass equation f in chart form, and the morphism ψ is
defined at p. Suppose there is a collision at p involving at most one main
type. Then ψ(p) = (1, 0, 0) or ψ(p) = (0, 0, 1).

If ψ(p) = (1, 0, 0), the collision is between at most one I∗n type and one or
more In types. In this case the modulus of the collision is 2, and a2 is a {ti}
normal element.

If ψ(p) = (0, 0, 1), the collision is between at most one one main type II,
IV , I∗0 , Z2, IV ∗, or II∗, and one or more zero types Z1. In this case the
modulus of the collision is 6, and a6 is a {ti} normal element.

For an example, consider the third line of the chart 198. This corresponds
to a point p in the discriminant divisor with ψ(p) = (0, 0, 1). The modulus
of the collision at p is 6. This entry corresponds to a collision between one 1
type and one 3 type, plus some number or zero types. Concretely, let O be
a local ring of characteristic 3 with uniformizing parameters s, t, u such that
t | 3 and u | 3. The scheme given by

y2 = x3 + st3 (199)

corresponds to a collision of types II, Z2, and Z1. These are 1, 3, and zero
types respectively.
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14.4.2 Characteristic 2

Here we describe the remaining collisions at points p of B of residue charac-
teristic 2.

Proposition 14.6 (Double Collisions in Char 2)
Let E be a Limited Minimal Weierstrass Elliptic Scheme defined over a base
scheme B. Let p be a point of B of residue characteristic 2. Let {ti} be
discriminant compatible set of uniformizing parameters at p, so that E is
cut out by a Weierstrass equation f in chart form, and the morphism ψ is
defined at p. Suppose there is a collision at p involving more than one main
type. Then the types involved in such a collision are described in chart 200,
where ψ(p) must be as in the first column of the chart.

ψ tiNormal Mod Collision Main Types Zero Types
(0, 0, 0, 1, 0) a4 4 (1, 2) (III, I∗0 ) X1
(0, 0, 0, 1, 0) a4 4 (1, 2) (III,X2) X1
(0, 0, 0, 0, 1) a6 6 (1, 3) (II, I∗0 ) X1, Y 1
(0, 0, 0, 0, 1) a6 6 (1, 3) (II,X2) X1, Y 1
(0, 0, 0, 0, 1) a6 6 (1, 4) (II, IV ∗) X1, Y 1
(0, 0, 0, 0, 1) a6 6 (1, 4) (II, Y 3) X1, Y 1
(0, 0, 0, 0, 1) a6 6 (2, 3) (IV, I∗0 ) X1, Y 1
(0, 0, 0, 0, 1) a6 6 (2, 3) (IV,X2) X1, Y 1

(200)

The chart has the same structure as chart 198. The first column list the
possible values of ψ(p). If the value of ψ(p) is not in this column, no collision
involving more than one type occurs at p. The second column indicates
which aj is forced to be a {ti} normal element. The third column gives the
modulus m of the collision. The fourth columns indicates v(am) for the two
types in the collision. Fifth column states what reduction types these v(am)
types can correspond to, and the last column indicates the type of possible
further zero types in the collision.

All other collisions not covered by proposition 198 include at most one main
type.
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Proposition 14.7 (Single Collisions in Char 2)
Let E be a Limited Minimal Weierstrass Elliptic Scheme defined over a base
scheme B. Let p be a point of B of residue characteristic 2. Let {ti} be
discriminant compatible set of uniformizing parameters at p, so that E is
cut out by a Weierstrass equation f in chart form, and the morphism ψ is
defined at p. Suppose there is a collision at p involving at most one main
type. Then

If there is exactly one main type, ψ(p) must be as in chart 201. The collision
is between one main type in the fourth column of chart 201, and one or
more zero types in the fifth column. The modulus of the collision and which
coefficients are forced to be {ti} normal elements are also specified in the
chart.

If there are only zero types, ψ(p) must be as in chart 202. The collision
is between two or more zero types in the fourth column of chart 202. The
modulus of the collision and which coefficient is forced to be {ti} normal
elements are also specified in the chart.

ψ tiNormal Mod Main Types Zero Types
(0, 1, 0, 0, 0) a2 2 I∗n, Tn In, Kn, K

′

n

(0, 0, 0, 1, 0) a4 4 III, I∗0 , X2, III∗ X1
(0, ∗, 0, ∗, 0) a2, a4 2 I∗0 , X2 X1
(0, 0, 0, 0, 1) a6 6 II, IV,X2, Y 2 X1, Y 1

I∗0 , IV
∗, Y 3, II∗

(0, 0, 0, ∗, ∗) a4, a6 2 I∗0 , X2 X1
(0, ∗, 0, 0, ∗) a2, a6 2 I∗0 X1
(0, ∗, 0, ∗, ∗) a2, a4, a6 2 I∗0 , X2 X1

(201)

The chart has the similar structure as chart 200, except that there is only
one main type in the collision.

ψ tiNormal Mod Zero Types
(1, 0, 0, 0, 0) a1 1 In

(0, 1, 0, 0, 0) a2 2 In, Kn, K
′

n

(0, 0, 0, 0, 1) a6 6 X1, Y 1

(202)
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14.4.3 Double Collisions

If we ignore zero types, the analysis of section 14.2 limits us to the study
of double collisions, regardless of the dimension of B ′. It is true, however,
that any number of zero types can collide at a point, up to the dimension
of B. These collisions have been discussed, and are non-trivial in the case
of collisions of types in the infinite families, such at types In. It is, how-
ever, interesting that the limit of the number of main types in a collision is
independent of the dimension of the base.

Corollary 14.8 (Only Double Collisions)
Let E be a Limited Minimal Weierstrass Elliptic Scheme defined over a base
scheme B. Let p be a point of the discriminant divisor. Suppose that the
discriminant has n components at p, each with reduction type Ti. At most
two of the Ti can be main types.

The above charts and discussion of zero types tell us what collisions are left
to consider. Specifically each line in chart 198 or 200 specifies the form of a
collision involving two main types and some zero types. We deal with these
types of collisions explicitly in section 16.6.

There are also collisions which involve only one main type. These collisions
are covered in section 16.7, unless they involve a type in one of the infinite
families. The zero types in these collision are the X1 , Y 1, and Z1 types,
and do not require any blow ups, but the special fiber at the collision point
may differ from the generic special fiber of the main type.

The collisions which do involve the infinite families and have at most one
main type are discussed in section 16.8. Both the main and zero types in
such a collision require one or more blow ups. These zero types are types In

and Kn, and K ′

n.

14.5 Settled Implies Resolvable

An alternative definition for a limited Weierstrass elliptic scheme would
be a Weierstrass elliptic scheme with only the double type of collisions in
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charts 198 and 200, and other the collisions described in sections 14.4.1, and
14.4.2. From this point of view the algorithm above reduce the study of arbi-
trary Weierstrass elliptic schemes to the study of limited Weierstrass elliptic
schemes.

That is, we compose the blow ups this section into one morphism B ′ → B,
pull back the elliptic scheme to B ′, and consider the birationally equivalent
minimal Weierstrass elliptic scheme. We have proved the following theorem.

Theorem 14.9 (Reduction to Limited Elliptic Schemes)
Let B be a regular Noetherian n-dimensional integral separated scheme, Let
X → B be an elliptic subscheme of P 2(B) defined locally by Weierstrass
Equations. Suppose X is pre-settled and settled over B. Then there exists a
blow up B′ → B defining the base change

Xmin ↔ X ′ → X
↓ ↓ ↓
B′ = B′ → B

and a minimal Weierstrass elliptic scheme Xmin birational to X ′ over B′

such that Xmin is a limited Weierstrass elliptic scheme over B ′.

Now the minimal Weierstrass elliptic scheme Xmin over B′ is prepared for
desingularization. Given such a further blow up X ′′ → Xmin, we will have
proven theorem 1.2. To produce a regular model X ′′ in the case of a limited
Weierstrass elliptic scheme all we need to do is to perform Tate’s algorithm
for each component of the discriminant locus, and then check regularity at
all points of X ′′ lying in a fiber above the discriminant locus.

As a result of explicit blow up computations, we can also describe the special
fibers of the collisions.
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15 The J morphism

15.1 Definition

In this section we specialize to Weierstrass elliptic schemes over bases that
have no points of residue characteristic 2 or 3. We make the assumption that
there is a morphism on the base that specializes to the j invariant for elliptic
curves [SIL 1] for fibers of the elliptic scheme that are non-singular elliptic
curves. This technique has also been used by Miranda in [MIR], where he
considered elliptic threefolds over surface defined over a field of characteristic
zero.

Much of the machinery of this paper has been designed to deal with points
of the base that do have points of residue characteristic 2 or 3, so this sec-
tion also highlights how the analysis simplifies if 1/6 is in all local rings of
the base. For example, we can always work with the simpler Weierstrass
equation 1, and the charts of section 4 become much simpler. In particular,
none of the new types described in section 6 arise as special fibers. This is
because each time a polynomial in Tate’s algorithm has a double root over
an extension field of κ, the root is actually κ rational. Also, the wild part of
the discriminant defined in section 12 is always zero, so the elliptic scheme
is trivially settled.

If we can show that the elliptic scheme is also pre-settled, we will be able
to directly apply the main theorem 1.2 to show the existence of a regular
model. Alternatively, we can prove the result directly by showing that the
groups of reduction types as defined in section 10 are separated and that
we can perform the reductions in section 14 to show that we have a limited
Weierstrass elliptic scheme. Then we would construct the regular model
explicitly as in section 16.

Given an arbitrary Weierstrass elliptic scheme we can always consider the
open subscheme that is the complement of the divisor (6), and ignore phe-
nomenon that occur over the primes 2 and 3.

We motivate the definition of the J morphism from the j invariant of an
elliptic curve. This invariant assigns to any elliptic curve the number c34/d.
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The standard formulas for c4, c6, and d are summarized in [SIL 1], and we
note that c4, c6, d and j are translation invariant and thus independent of
choice of Weierstrass equation.

We now define a J morphism.

Definition 15.1 (J morphism) Let B be a regular Noetherian n - dimen-
sional integral separated scheme. Suppose that none of the residue fields of
B have residue characteristic 2 or 3. Let X → B be an elliptic subscheme
of P 2(B) defined locally by Weierstrass Equations. Suppose the discriminant
divisor has normal crossings. Define the J map locally to be the rational map
J : B → P 1(B) given by

p 7→ (c34, d) (203)

If J extends to a morphism J : B → P 1(B) then it is called a J morphism.

Note that although the J map is defined by local Weierstrass equations, it is
at least a well defined rational map, since c4, and d are well defined functions
on B.

In the following section we assume that the J map is indeed a morphism and
we compute J on points of B which are in the discriminant locus. We then
show that only collisions among reduction types in the same group occur.
We show that this implies that our Weierstrass elliptic scheme is pre-settled.
This allows us to apply the main theorem 1.2 to such Weierstrass elliptic
schemes.

15.2 Calculating J

In this section we assume that X is a Weierstrass elliptic scheme over a base
B, that has no points of residue characteristic 2 or 3, that the discriminant
divisor has normal crossings and that there is a J morphism defined on B.
We first consider the base to be a regular local ring O.

Because 1/3 is in each local ring, we may translate and use a simpler Weier-
strass equation.

y2 = x3 + a4x+ a6. (204)
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Note that this Weierstrass equation may not be in chart form, as we defined
in in section 4.

However, we can make a similar chart for these Weierstrass equations. This
chart also appear as an exercise in [SIL 2].

Type I0 In II III IV I∗0 I∗n IV ∗ III∗ II∗ o/w

v(a4) 0 1+ 1 2+ 2+ 2 3+ 3 4+ 4+
v(a6) 0 1 2+ 2 3+ 3 4 5+ 5 6+
v(d) 0 n 2 3 4 6 6 + n 8 9 10 12+

(205)

With the simpler Weierstrass equation 204, we can use the definitions of c4
and d to compute J in terms of a4 and a6. We use the relations c4 = 48a4

and d = 64a3
4 − 27× 16a2

6 to conclude

c4
d

=
4 × 123 a3

4

4a3
4 − 27a2

6

. (206)

When J(p) = (a, b), we also write J = a
b
.

Consider H a component of the discriminant divisor, and let p be a generic
point of H that passes through no other components of the discriminant lo-
cus. Suppose {ti} is a discriminant compatible set of uniformizing parameters
at p, and that t1 = 0 defines the reduced discriminant locus at p.

Because only one component of the discriminant locus passes through p, we
know

d = αtn1 . (207)

where α is a unit in Op. Similarly since we chose p to be a generic point on
H, we may assume that a4 and a6 have the following simple form.

a4 = βtn1 . (208)

a6 = γtn1 . (209)

Here β and γ are units in Op. Note we do not claim that we can do this for
all points pεH, but at least for points on some open subset of U ⊂ H.

Then for all types except I0 and I∗0 we can compute the value of the J
morphism just by examining the valuations v1(a4) and v1(d) in chart 205.
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For types except I0 and I∗0 the value of J is constant on an open subset
U ⊂ H. Therefore, J is also constant on all of H. We summarize the results
of these computations in a proposition.

Proposition 15.2 Let B be a regular Noetherian n - dimensional integral
separated scheme. Suppose that none of the residue fields of B have residue
characteristic 2 or 3. Let X → B be an elliptic subscheme of P 2(B) defined
locally by Weierstrass Equations. Suppose the discriminant divisor has nor-
mal crossings, and that there is a J morphism J : B → P 1(B). Suppose p is
a point on a component H of the discriminant divisor and that H does not
have reduction type I∗0 . Then the valuations v(a4) and v(d) and the value of
J only depend on the reduction type of H and are specified in chart 210.

Type v(a4) v(d) J
In 0 n ∞
II ≥ 1 2 0
III 1 3 1728
IV ≥ 2 2 0
I∗n 1 6 + n ∞
IV ∗ ≥ 3 2 0
III∗ 3 3 1728
II∗ ≥ 4 2 0

(210)

It is not true that J is constant on a component of the discriminant divisor
of type I∗0 . By considering the fibers of the J morphism, we observe that
collisions among reduction types is limited. For each of the cases J = 0,
J = 1728, J = ∞, J 6= 0, 1728,∞, chart 210 shows us that the reduction
types must belong in the same group. Thus we have the following analog of
proposition 10.13.

Proposition 15.3 (J Morphism Separates Groups)
Let B be a regular Noetherian n - dimensional integral separated scheme.
Suppose that none of the residue fields of B have residue characteristic 2 or 3.
Let X → B be an elliptic subscheme of P 2(B) defined locally by Weierstrass
Equations. Suppose the discriminant divisor D has normal crossings, and
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that there is a J morphism J : B → P 1(B). If two or more components of
the discriminant divisor meet at a point pεB then the reduction types of these
components lie in the same group.

15.3 Pre-Settled

We have already mentioned that an elliptic scheme with a J morphism is
automatically settled. We show now that it is pre-settled. To to this, we
return to the definition of the straight part of the discriminant. It is computed
for each reduction type in chart 141.

We notice that for each reduction type with J 6= ∞ we have the simple
relation

straight(X) = v(d). (211)

and for the reduction types with J =∞ we have the simple relation

straight(X) = 0. (212)

Now suppose we blow up the base: B ′ → B, and let pεB. The J morphism
clearly pulls back to B ′. Suppose p passes through two or more components
of the discriminant locus. Then by proposition 15.3 we know that the type
of the exceptional divisor is the same group as the types involved in the
collision.

Assume J(p) = ∞. Then residuali(p) = 0 for each component in the dis-
criminant divisor and also residuale(p) = 0. Thus the pre-settled fault at p
is 0.

Assume J(p) 6= ∞. Then residuali(p) = vi(d) for each component in the
discriminant divisor and also residuale(p) = ve(d). But we also know that
the discriminant has normal crossings so by equation 137 its valuation is
additive in blow ups. Thus the pre-settled fault at p is also 0.

These two cases show that an elliptic scheme with a J morphism is a pre-
settled elliptic scheme.
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Proposition 15.4 (J Morphism Implies Pre-Settled) Let B be a regu-
lar Noetherian n - dimensional integral separated scheme. Suppose that none
of the residue fields of B have residue characteristic 2 or 3. Let X → B
be an elliptic subscheme of P 2(B) defined locally by Weierstrass Equations.
Suppose the discriminant divisor has normal crossings, and there exists a J
morphism

J : B → P 1(B)

extending the J invariant for non-singular elliptic curves. Then the elliptic
scheme is settled and pre-settled.

This now allows us to apply the main theorem 1.2 to conclude that the
scheme X → B does have a flat resolution. Thus we have proven theorem
1.3.

15.4 Modular Morphism

One may interpret a J morphism as a morphism from B to the full modular
curve X(1). If we were to strengthen this assumption, and hypothesize that
there was a morphism

B → X(n) (213)

for n ≥ 3 then the only possible reduction types are I0, and In, so the analysis
trivializes in this case.

15.5 Constructing J

It is possible to eliminate the assumption of the J morphism, and assume
instead that c4 and c6 have normal crossings. (I do not use this, elsewhere
in the thesis)

Using chart 205, one can prove that if the c4, c6, and d have normal crossings
then the J map already extends to a regular map.

Sketch of proof: Suppose a types In collides with a second type II, III, IV ,
IV ∗, III∗, or II∗. Consider blowing up the intersection of the two types.
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Since v1(c4) = v1(c6) = 0, The exceptional valuation is as

vs(c4) = v2(c4)

vs(c6) = v2(c6)

Thus the reduction type of the exceptional divisor is the same as the reduction
type of the second type. This is a contradiction since we know vs(d) > v2(d).
The same argument shows that a type I∗n may not collide with one of the
above types.

Now assume that a type III or III∗ collides with a second type II, IV , IV ∗,
or II∗. Consider blowing up the intersection of the two types. By the above
argument, the exceptional divisor can not be a type In or I∗n with n > 0.
But since the discriminant divisor has normal crossings, we conclude that
vs(d)ε{1, 5, 7, 11}. This can not happen.

Thus we conclude that types from separate groups may not collide. This will
imply pre-settled as in the previous subsection. However, it also proves that
the ration map J, is already a morphism.
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16 The Collisions

16.1 Away From 2 and 3

If we limit ourselves to the study of elliptic schemes X over bases B with no
points of residue characteristic 2 or 3, the analysis in this paper simplifies,
but we still obtain very interesting fibers in a regular model X ′′ → B. In fact,
most of the special fibers that we discover in the collisions over more general
bases have the same structure as those which appear over these limited bases.

In order to preview the special fibers that arise in our regular model, we first
summarize the special fibers which appear in a regular model over a base
where 1/6 is in all of the local rings of B. We describe these special fibers in
a proposition and with a chart of collisions.

Theorem 16.1 (Collisions Away from 2 and 3)
Let B be a regular Noetherian n-dimensional integral separated scheme, Let
X → B be a limited Weierstrass elliptic scheme defined over B, and suppose
B has no points of residue characteristic 2 or 3. Then there exists a series
of blow ups X ′′ → X such that X ′′ is regular, minimal, projective and flat
over B.

Over points of B not on the discriminant divisor the fibers of the map X ′′ →
B are non-singular elliptic curves.

Over non-singular points of the discriminant divisor the fibers of the map
X ′′ → B are the reduction types on Kodaira’s list [KOD].

The only types of collisions that occur between reduction types are as in chart
214, and over these singular points of the discriminant divisor the fibers of
the map X ′′ → B are also given by chart 214.
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Types inCollision Special F iber
II + I∗0 123
II + IV ∗ 12342
IV + I∗0 1232
III + I∗0 12321
In + Im In+m

In + I∗m (n− odd) I+
(n−1)/2+m

In + I∗m (n− even) I∗n/2+m

(214)

The special fibers appearing in the last column of chart 214 consist of various
rational curves of given multiplicities intersection transversally. They will be
described in section 16.6.

The I+
k type consists of 2 multiplicity 1 components connected to a chain

of k + 2 multiplicity 2 components. This is similar to a type Ik
∗, which has

k+1 multiplicity 2 components, but a pair of final multiplicity 1 components.
Thus type I+

k looks like type I∗k with the final two components identified. This
type will be constructed in section 16.8.

In the collisions specified by one of the last three lines in chart 214 there can
be any number of In types present in the collision, up to the dimension of
the base scheme. However, there may be at most one In type with n odd. If
there are multiple In types colliding at a point, the special fiber is still given
by chart 214, with n replaced by

∑

ni.

We do not prove theorem 16.1 here because it will be a corollary of the main
theorem 1.2 of this paper, and the description of the fibers in the general
case.

16.2 The Regular Model Exists

The main theorem 1.2, which the rest of the paper proves, depends on a desin-
gularization of a limited Weierstrass elliptic scheme. This desingularization
is the content of the following theorem.

Theorem 16.2 (Regular Model Exists)
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Let B be a regular Noetherian n-dimensional integral separated scheme, Let
X → B be a limited Weierstrass elliptic scheme defined over B. Then there
exists a series of blow ups X ′′ → X such that X ′′ is regular, minimal, pro-
jective and flat over B.

We will also describe all fibers of the morphism X ′′ → B in section 17. In
particular we will describe the collision fibers in chart 310.

16.3 Construction of the Regular Model

16.3.1 Applying Tate’s Algorithm

To prove theorem 16.2 we letX → B be a limited Weierstrass elliptic scheme.
Not only is B settled and pre-settled, but X has only the types of collisions
as specified in section 14. For each component of the discriminant divisor we
now blow up X as prescribed by theorem 7.1, the extended Tate’s algorithm.
The blow ups of Tate’s algorithm can be found in [TA] and [SIL 2], and we
explicitly described the blow ups for the new reduction types in section 6.
Fortunately a series of such blow ups does produce a regular scheme.

Suppose T is a component of the discriminant divisor defined locally by
t = 0. We define blow ups of X a-priori also locally by ideals such as (t, x, y)
or (x, y). Although x and y depend on a local Weierstrass equation, the fact
that each Weierstrass equation is in chart form implies that these local ideals
define a closed subscheme of X. This just means the ideals in the local rings
patch together to form a sheaf of ideals on X that define the blow up.

For example, in the first blow up in Tate’s algorithm, the ideals locally defined
by (t, x, y) define the subscheme of X that passes through the singular point
of each fiber over the component T .

16.3.2 The Blow ups of X

We thus define the blow ups globally by indicating over which components of
the discriminant divisor we perform Tate’s algorithm. We later then analyze
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the results locally to check regularity.

To construct the regular model X ′′, consider the set of components of the
discriminant divisor. This set is finite and each component has a reduction
type which is computable by theorem 7.1.

First perform the blow-ups specified in the extended Tate’s algorithm for
each component of type II∗. Then do this for each component of type III∗,
etc. We continue this process for a specific order of the reduction types. Let
us formalize the algorithm.

Algorithm 16.3 Let X be a limited Weierstrass elliptic scheme. Let S be
the set of the components of the discriminant divisor. Choose an order on
the set S such that T1 < T2 if type T1 appears before T2 on the following list.

II∗, III∗, IV ∗, Y 3, I∗0 , X2, IV, Y 2, III, II, I∗n, Kn, K
′

n, X1, Y 1, Z1 (215)

Then for this order of S, sequentially blow up X for each component TεS
according to the extended Tate’s algorithm.

Note that this is not the only order which will work, but this order suffices to
desingularize X. We also remark that types X1, Y 1, Z1, K1, and II actually
require no blow ups, so they can just as well be omitted from the list 215.

16.3.3 Describing X ′′

We have now constructed a scheme X ′′ and a morphism X ′′ → X.

The scheme X ′′ is projective because by the definition of blow ups, X ′′ will
be a subscheme of a product of projective spaces. By the Segre embedding
X ′′ is also a subscheme of of PN(B) for some large N .

X ′′ will be minimal in the sense that it the blow up of a limited Weierstrass
elliptic scheme X as defined in section 8.6. That is all, all localized Weier-
strass equations over the DVRs of the components of the discriminant divisor
are minimal Weierstrass equations over the DVR.
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Suppose we know that X ′′ is a regular scheme. Because B is regular, the
criteria for flatness is just a check on the fiber dimension of X → B. Once
we show that every fiber is of pure dimension one, we will know that X is
flat over B. This criteria is a case of theorem 23.1 in [MAT].

We now show that X is a regular scheme. To do this we analyze the results
of the blow ups of algorithm 16.3 locally. The scheme X is trivially regular
at all points not on a fiber of the discriminant locus. Suppose first that pεB
belongs to only one component of the discriminant locus. The analysis of
such points differs little from the analysis of elliptic schemes over DVRs, and
it is discussed briefly in section 16.4.

Now suppose that pεB belongs to more than one component of the discrim-
inant locus, so that p is a collision point. We show that every point of X ′′

in the fiber above p is a regular point of X ′′ by analyzing the results of al-
gorithm 16.3 over local rings Op. Depending on the broad type of collision,
these results are analyzed in sections 16.6, 16.7, or 16.8.

When we have shown that every point of X ′′ is regular, we will have finished
the proof of theorem 16.2, and thus also of the main theorem of the paper,
theorem 1.2. However, we also prove more. In addition to checking regu-
larity in the following subsections, we also describe all of the special fibers
geometrically.

16.4 The Simple Fibers

We first discuss the fibers of X ′′ → B at points p that belong to only one
component of the discriminant divisor. These fibers are on Kodaira’s list
[KOD], or are one of the new fiber types described in section 7.2. In the
proof of Tate’s algorithm [TA] and in the extension to it 7.1 regularity is
proved by showing that after dividing out by appropriate powers of the ti,
one of the aj is a unit in Op. That is, we use the special form of aj to show
that the cotangent space m

m2 at every point in the special fiber has the correct
dimension. In particular this was done in section 6, when computing the new
fiber types.
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The same arguments hold when B is not a DVR, with a slight modification.
We do not reproduce these calculations in full here, but only mention that
the settled and pre-settled hypothesis force the equivalent condition of the
coefficient aj. In this case we consider the morphisms ψ, φ1, and φ2 at a point
p where X is given by a Weierstrass equation in multiple chart form. One
or more of the coefficients aj are forced to be {ti} normal elements. We can
consult charts 153, 154, 187, or section 12.5.1 to determine which coefficients
aj are indeed {ti} normal elements.

16.5 The Collision Fibers

In this subsection we assume that pεB is a collision point. Because we take
X to be a limited Weierstrass elliptic scheme, the collision must be between
reduction types as specified in propositions 14.4, 14.5, 14.6, and 14.7. In
addition to specifying which reduction types can participate in the collision,
these propositions also specify which coefficients ai are forced to be {ti}
normal elements. This special form of this coefficient will be used to show
regularity at points of X in the fiber over p.

As defined in 13.4, the reduction types in a collision are either zero types or
main types. The collision types that exists in a limited Weierstrass elliptic
scheme can be grouped into three broad categories.

If a collision involves two main types plus some possible zero types, we call it
a Double Type Collision and consider it in section 16.6. If a collision involves
one main types plus one or more zero types, but no types in an infinite family
of reduction types, we call it a Single Type Collision and consider it in section
16.7. If the collision does involve a type in an infinite family of reduction
types, we call it a Multiple Type Collision and consider it in section 16.8. In
this third category even the zero types (such as In) require a series of blow
ups.

Our multidimensional version of Tate’s algorithm, algorithm 16.3, is com-
posed of a series of blow ups, and to fully analyze a scheme defined by a blow
up, more than one coordinate patch must be examined. We have already
seen an example of multiple coordinate patched in section 9.2.1 when blow-
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ing up a regular ring. For brevity, in the computations which follow, not all
coordinate patches will be shown. Rather, we only display the coordinate
patches where new components of the special fiber arise. We also remark
that a singular point of X ′′ must be a singular point of the fiber over p. This
limits the number of points that we must check for regularity.

16.6 Double Type Collisions

Here we consider collisions at pεB that involve two main types plus some
possible zero types. These collisions are described in propositions 14.4 and
14.6.

The limited Weierstrass elliptic scheme at p is described by a Weierstrass
equation in multiple chart form with coefficients in the local ring Op. Let
(s, t, r1...rk) be a discriminant compatible set of uniformizing parameters at
Op such that s = 0 and t = 0 define the two main types involved in the
collision. For some i, a zero type may be defined by some ri = 0.

As specified in propositions 14.4 and 14.6 these collision must have modulus
4 or 6, and furthermore either a4 or a6 must be a {ti} normal element.

We are going to analyze the effect at p of the blow ups of algorithm 16.3 that
construct X ′′ from X. After each blow up, we examine the fibers and check
for regularity. In case the residue characteristic of Op is not 2, we simplify the
following calculations by setting a1 = 0 and a3 = 0. In the computations that
follow let κs, and κt be the residue fields of the DVRs obtained by localizing
Op at s = 0 and t = 0, respectively. We also denote the residue field of Op

by κ.

16.6.1 The A6 (1,3) Collision

In this subsection we assume that the modulus of the collision is 6, and that
vs(a6) = 1, and vt(a6) = 3. In this case we also know vri

(a6) = 0 for the
other uniformizing parameters ri, and that a6 is a {ti} normal element.
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This case includes several types of collisions. We describe which collisions
these calculations cover with a chart. Chart 216 describes what the two main
types and possible zero types in the collision can be based on the residue
characteristic of Op.

ResidueChar Main Type s Main Type t Zero Types
6= 2, 3 II I∗0 −

3 II I∗0 , Z2 Z1
2 II I∗0 , X2 X1, Y 1

(216)

We group these cases together, since the Weierstrass equation has a similar
form in each case, and the same blow ups are required in each case.

We start with the subscheme of Op[x, y] defined by a Weierstrass equation

y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6 (217)

with the valuations of the ai as follows.

a1 a2 a3 a4 a6

vs ≥ 1 ≥ 1 ≥ 1 ≥ 1 = 1
vt ≥ 1 ≥ 1 ≥ 2 ≥ 2 = 3

(218)

We also assume that the polynomial

X3 +
a2

t
X2 +

a4

t2
X +

a6

t3
(219)

has no double or triple roots that are defined over κt.

Since a6 has normal crossings there is a unit u so that

a6 = ust3. (220)

We now perform the blow ups prescribed by algorithm 16.3. These are just
the blow ups in Tate’s algorithms for the two components s = 0, and t = 0.
We compute the special fiber in κ by setting s = t = ri = 0.

The beginning special fiber is a rational curve of multiplicity 1 given by
y2 = x3. All points of X ′′ on this component except the point x = y = 0 are
regular.

147



Tate’s algorithm specifies no blow ups over s = 0, but two over t = 0. First
blow up at the ideal (x, y, t). For the third coordinate patch put x = x1t and
y = y1t. This patch is the affine subscheme of Op[x1, y1] defined by

y2
1 + a1x1y1 +

a3

t
y1 = x3

1t+ a2x
2
1 +

a4

t
x1 +

a6

t2
. (221)

The special fiber is the multiplicity 2 rational curve defined by y2
1 = 0. All

points of X ′′ on this component except x1 = y1 = 0 are regular.

Next blow up at the ideal (y1, t). For the second coordinate patch put y1 =
y2t. This patch is the affine subscheme of Op[x1, y2] defined by

y2
2t+ a1x1y2 +

a3

t
y2 = x3

1 +
a2

t
x2

1 +
a4

t2
x1 +

a6

t3
. (222)

The special fiber is the multiplicity 3 rational curve defined by x3
1 = 0.

This last equation modulo the square of (s, t, x1), is

y2
2t = u s (223)

for some unit uεOp. Thus all points of X ′′ on this component are regular.

Indeed every point of X ′′ above p is regular, and the complete special fiber
is a chain of rational curves of multiplicity 1, 2 and 3.

Note that the presence of one or more zero types does not affect the com-
putation of the special fiber or the regularity at points on the fiber. This is
because the zero types X1, Y 1, and Z1, which may be present in the collision
all have vri

(a6) = 0. This concludes the computation of the special fiber and
proof of regularity for this case.

16.6.2 The A6 (2,3) Collision

In this subsection we assume that the modulus of the collision is 6, and that
vs(a6) = 2, and vt(a6) = 3. In this case we also know vri

(a6) = 0 for the
other uniformizing parameters ri, and that a6 is a {ti} normal element.

This case includes several types of collisions. We describe which collisions
these calculations cover with a chart. Chart 224 describes what the two main
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types and possible zero types in the collision can be based on the residue
characteristic of Op.

ResidueChar Main Type s Main Type t Zero Types
6= 2, 3 IV I∗0 −

3 IV I∗0 , Z2 Z1
2 IV, Y 2 I∗0 , X2 X1, Y 1

(224)

We group these cases together, since the Weierstrass equation has a similar
form in each case, and the same blow ups are required in each case.

We start with the subscheme of Op[x, y] defined by a Weierstrass equation

y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6 (225)

with the valuations of the ai as follows.

a1 a2 a3 a4 a6

vs ≥ 1 ≥ 1 ≥ 1 ≥ 2 = 2
vt ≥ 1 ≥ 1 ≥ 2 ≥ 2 = 3

(226)

We also assume that the polynomial

X2 +
a3

s
X +

a6

s2
(227)

has no double root that is defined over κs. and that the polynomial

X3 +
a2

t
X2 +

a4

t2
X +

a6

t3
(228)

has no double or triple roots that are defined over κt.

Since a6 has normal crossings there is a unit u so that

a6 = us2t3. (229)

We now perform the blow ups prescribed by algorithm 16.3. These are just
the blow ups in Tate’s algorithms for the two components s = 0, and t = 0.
We compute the special fiber in κ by setting s = t = ri = 0.
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The beginning special fiber is a rational curve of multiplicity 1 given by
y2 = x3. All points of X ′′ on this component except the point x = y = 0 are
regular.

Tate’s algorithm specifies one blow up over s = 0, and two over t = 0. First
blow up at the ideal (x, y, t). For the third coordinate patch put x = x1t and
y = y1t. This patch is the affine subscheme of Op[x1, y1] defined by

y2
1 + a1x1y1 +

a3

t
y1 = x3

1t+ a2x
2
1 +

a4

t
x1 +

a6

t2
. (230)

The special fiber is the multiplicity 2 rational curve defined by y2
1 = 0. All

points of X ′′ on this component except x1 = y1 = 0 are regular.

Next blow up at the ideal (y1, t). For the second coordinate patch put y1 =
y2t. This patch is the affine subscheme of Op[x1, y2] defined by

y2
2t+ a1x1y2 +

a3

t
y2 = x3

1 +
a2

t
x2

1 +
a4

t2
x1 +

a6

t3
. (231)

The special fiber is the multiplicity 3 rational curve defined by x3
1 = 0.

This last equation modulo the square of (s, t, x1), is

y2
2t = 0. (232)

Thus all points of X ′′ on this component except the point x1 = y2 = 0 are
regular.

Next blow up at the ideal (x1, y2, s). For the second coordinate patch put
x1 = x2y2 and s = y2g. This patch is an affine subscheme of Op[x2, y2, g]
defined by two equations.

t+ a1x2 +
a3

st
g = x3

2y2 +
a2

t
x2

2 +
a4

st2
x2g +

a6

s2t3
g2. (233)

s = y2g. (234)

The special fiber is defined by the equations y2g = 0, and x3
2y2 + a6

s2t3
g2, and

has two components. The g = x2 = 0 component has multiplicity 3, and has
already appeared before this blow up. The exceptional divisor of this blow
up is the g = y2 = 0 component.
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At points where the two components meet, x2 = y2 = 0. Since equations 233
and 234 modulo the square of (s, t, x2, y2) are s = 0, and t = 0, the scheme
is not singular at that point.

Focusing on the new component, we consider the open subscheme where
x2 6= 0. Multiplying s = y2g by x3

2 and eliminating y2 in equation 233, shows
us that this open subscheme is isomorphic to the subscheme of Op[x2, g]
defined by a single equation.

g(t+ a1x2 +
a3

st
g) = x3

2s+ g(
a2

t
x2

2 +
a4

st2
x2g +

a6

s2t3
g2)g. (235)

The special fiber is defined by a6

s2t3
g3 = 0. But a6

s2t3
is a unit so the special

fiber is just the multiplicity 3 rational curve defined by g3 = 0.

Equation 235 modulo the square of (s,t,g) is

x3
2s = 0. (236)

Because on this open subscheme x2 6= 0, this shows that every point of X ′′

on this component is regular.

Indeed every point of X ′′ above p is regular, and the complete special fiber
is a chain of rational curves of multiplicity 1, 2, 3 and 3.

Note that the presence of one or more zero types does not affect the com-
putation of the special fiber or the regularity at points on the fiber. This is
because the zero types X1, Y 1, and Z1, which may be present in the collision
all have vri

(a6) = 0. This concludes the computation of the special fiber and
proof of regularity for this case.

16.6.3 The A6 (1,4) Collision

In this subsection we assume that the modulus of the collision is 6, and that
vs(a6) = 1, and vt(a6) = 4. In this case we also know vri

(a6) = 0 for the
other uniformizing parameters ri, and that a6 is a {ti} normal element.

This case includes several types of collisions. We describe which collisions
these calculations cover with a chart. Chart 237 describes what the two main
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types and possible zero types in the collision can be based on the residue
characteristic of Op.

ResidueChar Main Type s Main Type t Zero Types
6= 2, 3 II IV ∗ −

3 II IV ∗ Z1
2 II IV ∗, Y 3 X1, Y 1

(237)

We group these cases together, since the Weierstrass equation has a similar
form in each case, and the same blow ups are required in each case.

We start with the subscheme of Op[x, y] defined by a Weierstrass equation

y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6 (238)

with the valuations of the ai as follows.

a1 a2 a3 a4 a6

vs ≥ 1 ≥ 1 ≥ 1 ≥ 1 = 1
vt ≥ 1 ≥ 2 ≥ 2 ≥ 3 = 4

(239)

We also assume that the polynomial

X3 +
a2

t
X2 +

a4

t2
X +

a6

t3
(240)

has no double root that is defined over κt.

Since a6 has normal crossings there is a unit u so that

a6 = ust4. (241)

We now perform the blow ups prescribed by algorithm 16.3. These are just
the blow ups in Tate’s algorithms for the two components s = 0, and t = 0.
We compute the special fiber in κ by setting s = t = ri = 0.

The beginning special fiber is a rational curve of multiplicity 1 given by
y2 = x3. All points of X ′′ on this component except the point x = y = 0 are
regular.
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Tate’s algorithm specifies no blow ups over s = 0, but three over t = 0. First
blow up at the ideal (x, y, t). For the third coordinate patch put x = x1t and
y = y1t. This patch is the affine subscheme of Op[x1, y1] defined by

y2
1 + a1x1y1 +

a3

t
y1 = x3

1t+ a2x
2
1 +

a4

t
x1 +

a6

t2
. (242)

The special fiber is the multiplicity 2 rational curve defined by y2
1 = 0. All

points of X ′′ on this component except x1 = y1 = 0 are regular.

Next blow up at the ideal (y1, t). For the second coordinate patch put y1 =
y2t. This patch is the affine subscheme of Op[x1, y2] defined by

y2
2t+ a1x1y2 +

a3

t
y2 = x3

1 +
a2

t
x2

1 +
a4

t2
x1 +

a6

t3
. (243)

The special fiber is the multiplicity 3 rational curve defined by x3
1 = 0.

This last equation modulo the square of (s, t, x1), is

y2
2t = 0. (244)

Thus all points of X ′′ on this component except the point x1 = y2 = 0 are
regular.

The next blow up prescribed by Tate’s algorithm is at the ideal (x1, y
2
2−

a6

t4
, t).

Note that a6

t4
is not a square in Op modulo t. We blow up at this ideal, and

for brevity we will skip the second and third coordinate patches.

For the first coordinate patch put x1b = y2
2 −

a6

t4
, and x1c = t. Then this

patch is an affine subscheme of Op[x1, y2, b, c] defined by three equations.

x1b = y2
2 −

a6

t4
. (245)

x1c = t. (246)

bc+
a1

t
cy2 +

a3

t3
y2c

2 = x1 +
a2

t
+
a4

t3
c. (247)

The last equation may be solved for x, so we can eliminate it.

In particular, by setting s = t = 0, we compute that the special fiber is
defined by the equations y2

2 = 0,and bc2 = 0. The c = y2 = 0 component has
multiplicity 4, and the b = y2 = 0 component has multiplicity 2.
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To show regularity requires that we compute some derivatives. By eliminat-
ing x1 from equations 245, 246, and 247, we see that this patch is isomorphic
to a subscheme of Op[y2, b, c] given by two equations.

(bc+
a1

t
cy2 +

a3

t3
y2c

2)c = t+ (
a2

t
+
a4

t3
c)c. (248)

(bc+
a1

t
cy2 +

a3

t3
y2c

2)b = y2
2 −

a6

t4
+ (

a2

t
+
a4

t3
c)b. (249)

Call the two equations f and g. At points with s = t = y2 = c = 0, the
matrix of partial derivatives is given by

[

df
ds

df
dt

dg
ds

dg
dt

]

=
[

0 1
a6

st4
0

]

. (250)

At points with s = t = y2 = b = 0, the matrix of partial derivatives is given
by

[

df
ds

df
dt

dg
ds

dg
dt

]

=
[

∗ 1
a6

st4
0

]

. (251)

On the special fiber either b = 0, or c = 0, and in each case the matrix of
partial derivatives is nonsingular, so X ′′ is regular at all points on these two
components.

Indeed every point of X ′′ above p is regular, and the complete special fiber
is a chain of rational curves of multiplicity 1, 2, 3, 4, and 2.

Note that the presence of one or more zero types does not affect the com-
putation of the special fiber or the regularity at points on the fiber. This is
because the zero types X1, Y 1, and Z1, which may be present in the collision
all have vri

(a6) = 0. This concludes the computation of the special fiber and
proof of regularity for this case.

16.6.4 The A4 (1,2) Collision

In this subsection we assume that the modulus of the collision is 4, and that
vs(a4) = 1, and vt(a4) = 2. In this case we also know vri

(a4) = 0 for the
other uniformizing parameters ri, and that a4 is a {ti} normal element.
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This case includes several types of collisions. We describe which collisions
these calculations cover with a chart. Chart 252 describes what the two main
types and possible zero types in the collision can be based on the residue
characteristic of Op.

ResidueChar Main Type s Main Type t Zero Types
6= 2, 3 III I∗0 −

3 III I∗0 −
2 III I∗0 , X2 X1

(252)

We group these cases together, since the Weierstrass equation has a similar
form in each case, and the same blow ups are required in each case.

We start with the subscheme of Op[x, y] defined by a Weierstrass equation

y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6 (253)

with the valuations of the ai as follows.

a1 a2 a3 a4 a6

vs ≥ 1 ≥ 1 ≥ 1 = 1 ≥ 2
vt ≥ 1 ≥ 1 ≥ 2 = 2 ≥ 3

(254)

We also assume that the polynomial

X3 +
a2

t
X2 +

a4

t2
X +

a6

t3
(255)

has no double or triple roots that are defined over κt.

Since a4 has normal crossings there is a unit u so that

a4 = ust2. (256)

We now perform the blow ups prescribed by algorithm 16.3. These are just
the blow ups in Tate’s algorithms for the two components s = 0, and t = 0.
We compute the special fiber in κ by setting s = t = ri = 0.

The beginning special fiber is a rational curve of multiplicity 1 given by
y2 = x3. All points of X ′′ on this component except the point x = y = 0 are
regular.
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Tate’s algorithm specifies one blow up over s = 0, and two over t = 0. First
blow up at the ideal (x, y, t). For the third coordinate patch put x = x1t and
y = y1t. This patch is the affine subscheme of Op[x1, y1] defined by

y2
1 + a1x1y1 +

a3

t
y1 = x3

1t+ a2x
2
1 +

a4

t
x1 +

a6

t2
. (257)

The special fiber is the multiplicity 2 rational curve defined by y2
1 = 0. All

points of X ′′ on this component except x1 = y1 = 0 are regular.

Next blow up at the ideal (y1, t). For the second coordinate patch put y1 =
y2t. This patch is the affine subscheme of Op[x1, y2] defined by

y2
2t+ a1x1y2 +

a3

t
y2 = x3

1 +
a2

t
x2

1 +
a4

t2
x1 +

a6

t3
. (258)

The special fiber is the multiplicity 3 rational curve defined by x3
1 = 0.

This last equation modulo the square of (s, t, x1), is

y2
2t = 0. (259)

Thus all points of X ′′ on this component except the point x1 = y2 = 0 are
regular.

Next blow up at the ideal (x1, y2, s). For the second coordinate patch put
x1 = x2y2 and s = y2g. This patch is an affine subscheme of Op[x2, y2, g]
defined by two equations.

t+ a1x2 +
a3

st
g = x3

2y2 +
a2

t
x2

2 +
a4

st2
x2g +

a6

s2t3
g2. (260)

s = y2g. (261)

The special fiber is defined by two equations.

x3
2y2 +

a4

st2
x2g +

a6

s2t3
g2. (262)

y2g = 0. (263)

There are three components in this fiber. The first component is the mul-
tiplicity 3 rational curve defined by g = x2 = 0. It has already appeared
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before this blow up.. The second component is the multiplicity 2 rational
curve defined by g = y2 = 0. The third component is the multiplicity 1
rational curve and is defined by y2 = 0 and

a4

st2
x2 +

a6

s2t3
g. (264)

These three components meet at the point g = x2 = y2 = 0. The equations
262 and 263 modulo the ideal (s, t, g, x2, y2) are just t = 0 and s = 0, so this
point of X ′′ is a regular point.

In fact we can easily see that X ′′ is regular at all points in this coordinate
patch with g = 0. Call the two equations f and g. At points with s = t =
g = 0, the matrix of partial derivatives is given by

[

df
ds

df
dt

dg
ds

dg
dt

]

=
[ da2

ds
1

1 0

]

. (265)

To be complete we could check the other coordinate patches for regularity.
We omit this check and just state that indeed every point of X ′′ above p
is regular, and the complete special fiber is a chain of rational curves of
multiplicity 1, 2, 3, 2 and 1, such that the last three components meet in a
point.

Note that the presence of one or more zero types does not affect the com-
putation of the special fiber or the regularity at points on the fiber. This is
because the zero types X1, Y 1, and Z1, which may be present in the collision
all have vri

(a6) = 0. This concludes the computation of the special fiber and
proof of regularity for this case.

16.6.5 The A4 (1,2) Alternate Collision

In this subsection we present a variation of the computation of section 16.6.4.
The purpose of this section is to highlight the fact that the regular model
X ′′ is not unique. In particular, the order of the blow ups is relevant to the
special fiber types that arise.
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Section 16.6.4 relies of the fact that in algorithm 16.3, Tate’s algorithm is
computed first for the main type I∗0 or X2, and secondly for the main type
III. Suppose instead, we alter the order of algorithm 16.3 such that type
III is the first type to appear in list 215. Then the collision of section 16.6.4
is the only one which would be altered. I briefly discuss the blow ups and
results at such a collision point.

The first component of the special fiber is a multiplicity 1 rational curve.
Blow up at the ideal (x, y, s), and examine the third coordinate patch. This
component is a multiplicity 2 rational curve. Blow up at the ideal (x, y, t),
and examine the first and third coordinate patch. In the first patch there is a
new multiplicity 2 rational curve intersecting the previous one. The point of
intersection is a singular point of X ′′. In the third patch there is just the same
new multiplicity 2 rational but with a singular point that does not appear in
the first patch. Blow up along the whole new multiplicity two component.
In patch one of the previous blow up the exceptional divisor is a multiplicity
3 component. In patch three of the previous blow up the exceptional divisor
is a multiplicity 1 component.

It is easy to check that every point of X ′′ above p is regular, and the complete
special fiber is also a chain of rational curves of multiplicity 1, 2, 3, 2 and 1.
However in contrast with the results of section 16.6.4, the last multiplicity
one component does not meet the multiplicity two component.

We conclude that the order of blow ups over the two discriminant divisors
does, in general, matter. In this case the special fibers, although similar do
have different geometry. The fibers are indeed very similar, we will still call
them both chains of rational curves of multiplicity 1, 2, 3, 2 and 1.

16.6.6 Summary of Double Collision Fibers

Proposition 16.4 (Double Fiber Possibilities)
Let X ′′ be the regular model of a limited Weierstrass elliptic scheme over a
base B, constructed by algorithm 16.3. Let pεB, and let {ti} be a discriminant
compatible set of uniformizing parameters at p. Suppose the reduction types
T1 and T2 are main type and all other types are zero types.
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Suppose the modulus of the collision is 6, and that T1 is type II and type T2

is type I∗0 , type X2 or type Z2. Then the special fiber of X ′′ at p is a chain
of rational curves with multiplicities

1− 2− 3. (266)

Suppose the modulus of the collision is 6, and that T1 is type II and type
T2 is type IV ∗, or type Y 3. Then the special fiber of X ′′ at p is a chain of
rational curves with multiplicities

1− 2− 3− 4− 2. (267)

Suppose the modulus of the collision is 6, and that T1 is type IV and type T2

is type I∗0 , type X2 type Z2. Then the special fiber of X ′′ at p is a chain of
rational curves with multiplicities

1− 2− 3− 2. (268)

Suppose the modulus of the collision is 4, and that T1 is type III and type T2

is type I∗0 or type X2. Then the special fiber of X ′′ at p is a chain of rational
curves with multiplicities

1− 2− 3− 2− 1. (269)

The last multiplicity 1 component also meets the multiplicity 3 component.

There are no collisions involving two main types except those described above.

Refer to section 16.6.5 for an alternate fiber type of the modulus 4 collision
described in proposition 16.4.

16.7 Single Type Collisions

Here we consider collisions that involve one main types plus at least one zero
type, but no types in an infinite family of reduction types. The possible zero
types are X1, Y 1, and Z1. These types of collisions only occur at points p
with residue characteristic 2 or 3.

159



Such collisions will be described by a Weierstrass equation in multiple chart
form with coefficients in the local ring Op. Let (t, r1...rk) be a discriminant
compatible set of uniformizing parameters at Op such that t = 0 defines the
two main type involved in the collision. For at least one i, a zero type is
defined by ri = 0.

The colliding types are described in propositions 14.5 and 14.7, and the zero
types must be among X1, Y 1, and Z1. These reduction types do not require
any blow ups, so the only blow ups are those prescribed by Tate’s algorithm
for the main type defined by t = 0. We do not reproduce these blowups here
since they are given in [SIL 1].

Suppose the reduction type of the main type is T . The presence of some zero
types in the collision means that vi(aj) > 0 for some i and j. This means
that some of the Weierstrass coefficients vanish in the residue field of p. As
a result the special fiber at p is either type T , or similar to type T but with
some components identified.

In the following subsections we discuss which components of T may be iden-
tified in the special fiber at p. We denote the residue field of Op by κ.

16.7.1 The A6 (0,1) Collision

In this subsection we assume that the modulus of the collision is 6, and that
vt(a6) = 1. In this case we also know vri

(a6) = 0 for the other uniformizing
parameters ri, and that a6 is a {ti} normal element.

This case includes several types of collisions. We describe which collisions
these calculations cover with a chart. Chart 270 describes what the main
types and possible zero types in the collision can be based on the residue
characteristic of Op.

Char(κ) MainType Zero Types
3 II Z1
2 II X1, Y 1

(270)

The special fiber is a nodal cubic. Because a6

t
is a unit in Op, the scheme is
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regular at the cusp. The extra vanishing of the other coefficients ai has no
effect on this computation. Thus the special fiber is still a type II.

16.7.2 The A6 (0,2) Collision

In this subsection we assume that the modulus of the collision is 6, and that
vt(a6) = 2. In this case we also know vri

(a6) = 0 for the other uniformizing
parameters ri, and that a6 is a {ti} normal element.

This case includes several types of collisions. We describe which collisions
these calculations cover with a chart. Chart 271 describes what the main
types and possible zero types in the collision can be based on the residue
characteristic of Op.

Char(κ) MainType Zero Types
3 IV Z1
2 IV, Y 2 X1, Y 1

(271)

Following the sequences of blow ups in Tate’s algorithm for type IV or Y 2,
the fact that a6

t2
is a unit in Op shows that every point of X ′′ on the fiber

above p is regular. This special fiber will be of type IV or Y 2 depending on
the number of roots of the polynomial 8 in κ.

If char(κ) = 3, the polynomial has distinct roots, but if char(κ) = 2, then
vr(a3) > 0 for some index r, thus polynomial a double root in κ.

We conclude the special fiber is type IV if char(κ) = 3, and type Y 2 if
char(κ) = 2.

16.7.3 The A6 (0,3) Collision

In this subsection we assume that the modulus of the collision is 2 or 6,
and that vt(a6) = 3. In this case we also know vri

(a6) = 0 for the other
uniformizing parameters ri, and that a6 is a {ti} normal element. If the
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modulus of the collision is 2, we also know that vt(a2) = 1, and that a2 is a
{ti} normal element.

This case includes several types of collisions. We describe which collisions
these calculations cover with a chart. Chart 271 describes what the main
types and possible zero types in the collision can be based on the modulus
of the collision and residue characteristic of Op.

Char(κ) Modulus Main Type Zero Types
3 6 I∗0 , Z2 Z1
2 6 I∗0 , X2 X1
2 6 I∗0 Y 1
2 2 I∗0 , X2 X1

(272)

Following the sequences of blow ups in Tate’s algorithm for type I∗0 or X2,
the fact that 9 has no κ rational multiple roots shows that every point of X ′′

above p is regular. Given the fact that the only main type in the collision
has straight discriminant 6, and rational multiple root of 9 would violate the
pre-settled hypothesis. This special fiber will be of type I∗0 or X2 depending
on the types of roots of the polynomial 9 in κ.

If char(κ) = 3, the polynomial has a triple non rational root. If char(κ) = 2,
and the main type is X2 the polynomial has a double non rational root. If
char(κ) = 2, and the zero type is Y 2 the polynomial must have distinct
roots, otherwise we can contradict the settled hypothesis. For the collisions
involving I∗0 and X1, the result depends on the exact from of the coefficients.
If vt(a6−a4a2) > 0 the polynomial the polynomial has a double non rational
root. if the char(κt) = 0, the converse holds. It is possible to reduce to this
situation, but let us be content with the following.

The special fiber is type Z2 if char(κ) = 3, and if char(κ) = 2 and the main
type is X2, then the special fiber is X2. If char(κ) = 2 and the main type
is I∗0 , then the special fiber is X2 or I∗0 .
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16.7.4 The A6 (0,4) Collision

In this subsection we assume that the modulus of the collision is 6, and that
vt(a6) = 4. In this case we also know vri

(a6) = 0 for the other uniformizing
parameters ri, and that a4 is a {ti} normal element.

This case includes several types of collisions. We describe which collisions
these calculations cover with a chart. Chart 273 describes what the main
types and possible zero types in the collision can be based on the residue
characteristic of Op.

Char(κ) MainType Zero Types
3 IV ∗ Z1
2 IV ∗, Y 3 X1, Y 1

(273)

Following the sequences of blow ups in Tate’s algorithm for type IV ∗ or Y 3,
the fact that a6

t4
is a unit in Op shows that every point of X ′′ on the fiber

above p is regular. This special fiber will be of type IV ∗ or Y 3 depending
on the number of roots of the polynomial 10 in κ.

If char(κ) = 3, the polynomial has distinct roots, but if char(κ) = 2, then
vr(a3) > 0 for some index r, thus polynomial a double root in κ.

We conclude the special fiber is type IV ∗ if char(κ) = 3, and type Y 3 if
char(κ) = 2.

16.7.5 The A6 (0,5) Collision

In this subsection we assume that the modulus of the collision is 6, and that
vt(a6) = 5. In this case we also know vri

(a6) = 0 for the other uniformizing
parameters ri, and that a5 is a {ti} normal element.

This case includes several types of collisions. We describe which collisions
these calculations cover with a chart. Chart 274 describes what the main
types and possible zero types in the collision can be based on the residue
characteristic of Op.
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Char(κ) MainType Zero Types
3 II∗ Z1
2 II∗ X1, Y 1

(274)

Following the sequences of blow ups in Tate’s algorithm for type II∗, the
fact that a6

t5
is a unit in Op shows that every point of X ′′ on the fiber above

p is regular. This special fiber will be of type always be of type II∗.

The extra vanishing of the other coefficients ai has no effect on this compu-
tation. Thus the special fiber is still a type II∗.

16.7.6 The A4 (0,1) Collision

In this subsection we assume that the modulus of the collision is 4, and that
vt(a4) = 1. In this case we also know vri

(a4) = 0 for the other uniformizing
parameters ri, and that a4 is a {ti} normal element.

This case includes only collisions at points of residue characteristic 2 between
a main type III, and a zero type X1.

The special fiber is always a type III. Because a4

t
is a unit in Op, the

scheme is regular at the point of tangency. The extra vanishing of the other
coefficients ai has no effect on this computation. Thus the special fiber is
still a type III.

16.7.7 The A4 (0,2) Collision

In this subsection we assume that the modulus of the collision is 4, and that
vt(a4) = 2. In this case we also know vri

(a4) = 0 for the other uniformizing
parameters ri, and that a4 is a {ti} normal element.

This case includes only collisions at points of residue characteristic 2 between
a main type I∗0 , or X2 and a zero type X1.

As in section 16.7.3, the special fiber is a-priori a type I∗0 , or X2, depending
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on the types of roots of the polynomial 9 in κ. The fact that 9 has no κ
rational multiple roots also shows that every point of X ′′ above p is regular.

By consulting the value of ψ in chart 201, we see that vt(a2) > 1, and
vt(a6) > 3. Thus the polynomial 9 must have a double non rational root.

Thus the special fiber is still always a type X2.

16.7.8 The A4 (0,3) Collision

In this subsection we assume that the modulus of the collision is 4, and that
vt(a4) = 3. In this case we also know vri

(a4) = 0 for the other uniformizing
parameters ri, and that a4 is a {ti} normal element.

This case includes only collisions at points of residue characteristic 2 between
a main type III∗, and a zero type X1.

The special fiber is always a type III. Because a4

t3
is a unit in Op, the

scheme is regular at the point of tangency. The extra vanishing of the other
coefficients ai has no effect on this computation. Thus the special fiber is
still a type III∗.

16.7.9 Summary of Single Collision Fibers

We summarize what components of the main type may be identified in the
special fiber in a proposition and a chart.

Proposition 16.5 (Single Special Fibers)
Let X ′′ be the regular model of a limited Weierstrass elliptic scheme over a
base B constructed by algorithm 16.3. Let pεB, and let {ti} be a discriminant
compatible set of uniformizing parameters at p. Suppose the reduction type
T1 is a main type and all other types are zero types. Then the special fiber of
X ′′ at p is equal to T1, or is T1 with some components identified.

The only collisions of this type that can occur appear on chart 275, and for
each type of collision, the chart specifies the special fiber.
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MainType Zero Type Special F iber
II X1, Y 1, Z1 II
III X1, Y 1 III
IV X1, Y 1 Y 2
Y 2 X1, Y 1 Y 2
I∗0 X1, Y 1 I∗0 , X2
I∗0 Z1 Z2
X2 X1 X2
IV ∗ X1, Y 1 Y 3
Y 3 X1, Y 1 Y 3
III∗ X1, Y 1 III∗

II∗ X1, Y 1, Z1 II∗

(275)
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16.8 Multiple Type Collisions

Here we consider collisions among types in the infinite families of reduction
types. These collisions involve at most one main type and at least one zero
types. These collisions are described in propositions 14.5 and 14.7.

Such collisions will be described by a Weierstrass equation in multiple chart
form with coefficients in the local ring Op. If there is a main type in the
collision we let (s, t1...tk) be a discriminant compatible set of uniformizing
parameters at Op such that s = 0 defines this main type. Otherwise let
(t1...tk) be a discriminant compatible set of uniformizing parameters at Op

As specified in propositions 14.5 and 14.7 the collision must be between
reduction types in the a1 or a2 groups, and furthermore either a1 or a2 must
be a {ti} normal element.

Because many types of collisions require the same blow up computations we
use the most general Weierstrass equations possible and state which collisions
the computation corresponds to.

16.8.1 Char 6= 2 Collisions

Here we discuss resolution of X over a point pεB with residue characteristic
not 2. By referring to the charts of section 4, we see that the new types
in the infinite families, types Kn, K ′

n, and Tn arise only when the residue
characteristic is 2. Thus the only reduction types involved in a collision at p
are of type In or I∗n. These collisions are also described in 14.5.

We may use the simpler Weierstrass equation 1 to define the scheme at p,
and we have also limited ourselves to collisions between types In and I∗n with
at most one I∗n type and at most one In type with n-odd.

The special fibers will not be computed here because they follow as special
cases of the arguments in the following sections. However, these sections
attempt to focus on the more difficult case where the characteristic of the
residue field is 2. We summarize the results of the computations in this
simpler case first.
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Types Central F iber
In + Im In+m

In + I∗m (n− odd) I+
(n−1)/2+m

In + I∗m (n− even) I∗n/2+m

(276)

The I+
k types are described in section 16.1.

We now consider collisions over points with Op having residue characteristic
2. The collisions may involving the new types Kn, K ′

n, or Tn.

In these cases either a2 or a1 has normal crossings, and as in 14.7 we reduce
to the case where there is at most one main type. In the same section we
reduced to the case that among In, Kn, and K ′

n types in a collision, at most
one n is odd. We further assume that the local rational maps φ1 or φ2 are
well defined. We use this morphism to show that the final coordinate patch
in a series of blow ups contains no singular points.

16.8.2 The a1 Collisions

In this section we discuss the resolution over a point p with modulus of
collision 1. This means that a1 is a unit in Op and the only reduction types
involved in the collision are In types.

As mentioned in section 14.2 we have reduced to the case of collisions between
In types with at most one n odd.

It is straightforward to check that if k Ink
types collide, the resulting special

fiber will be of type IN with N =
∑

nk.

These computations will not be reproduced because they are very similar to
the computation of section 16.8.3

To perform the analysis in full detail one would use the the In detail charts
4.3, and the morphism ψ1. We mention that the number of blow ups needed
for each component of the discriminant divisor is half the valuation of the
discriminant, rounded down. The order of the blow ups is not important for
purposes of the construction of a regular model. Finally, the fact that ψ1 is a

168



morphism guarantees that one of a3, a4, or a6 becomes a unit after the final
blow up. This proves regularity for all points in the special fiber.

16.8.3 The In, Kn Collisions

In this section we assume that the modulus of the collision is 2, and that
there are no main types involved in the collision. We assume a2 is a unit
in Op, and that vi(a1) > 1 for all {ti} in the discriminant divisor. We also
assume that at least one of a3, a4, and a6 are {ti} normal elements, depending
on the value of φ2(p).

This case includes several general types of collisions. We describe these
categories in a list.

1. All In types.

2. At least one Kn or K ′

n type, one odd type.

3. At least one Kn type, no K ′

n type, no odd types.

4. At least one K ′

n type, no odd types.

We group these cases together, since the Weierstrass equation has a similar
form in each case, and the same blow ups are required in each case. Although
the same blow ups suffice to investigate the first case, we assume that there
is at least one Kn, or K ′

n type.

We note also that the DVR, Ri, corresponding to any In type must have
residue characteristic 0, since otherwise we would have vi(a1) = 0. We further
assume that among the In, Kn, or K ′

n types present in a collision at most
one of the n’s is odd.

We group these cases together, since the Weierstrass equation has a similar
form in each case, and the same blow ups are required in each case. Let
{ti} be a set of uniformizing set of parameters for Op such that the first few

169



ti = 0 define the discriminant locus. Regardless of the reduction type of Ei,
we begin with a subscheme of Op[x, y] defined by a Weierstrass equation

y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6 (277)

such that for each {ti}

a1 a2 a3 a4 a6

vti ≥ 1 0 ≥ ni

2
≥ ni

2
≥ ni

(278)

We are going to perform the blow ups prescribed by Tate’s algorithm for
each of the reduction types over ti = 0, and compute the special fiber over
the closed point of Op. To do this we set all si = 0.

The beginning special fiber is a rational curve of multiplicity 1. Tate’s algo-
rithm specifies ni

2
blow ups for each component ti = 0. In order for there to

be a collision we have at least one ni ≥ 2, so let the first blow up be at the
ideal (x, y, ti).

For the third coordinate patch put x = x1ti and y = y1ti. This patch is the
affine subscheme of Op[x1, y1] defined by

y2
1 + a1x1y1 +

a3

ti
y1 = x3

1ti + a2x
2
1 +

a4

ti
x1 +

a6

t2i
. (279)

The special fiber ti = 0 consists of a multiplicity 2 rational curve defined by
y2

1 = a2x
2
1.

This component is not defined over the residue field, but in a degree two
extension of it. This is because a2 is not a square in κ the residue field of Op.
A priori we only knew that a2 was not a square in the residue field of the
DVR corresponding to a Kn type, but the pre-settled hypothesis guarantees
that it is also non square in κ.

Now repeat that blow up for a total of ni

2
times for each component ti = 0.

That is blow up at an ideal (x′, y′, ti),
ni

2
times for each i, after appropriately

renaming the x, and y coordinates. Each such blow up produces a new
multiplicity 2 component not rational over κ, except perhaps the last.
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Lets now examine the last coordinate patch. Define

T = Π t
[
ni
2

]

i . (280)

Here the brackets denote the greatest integer function. As in the first blow
up, each successive blow up reduces the powers of ti in a3, a4, a6, and adds
powers of ti to the x3 coefficient. Thus it is easy to see that the last coordinate
patch is given by

y2
1 + a1x1y1 +

a3

T
y1 = x3

1T + a2x
2
1 +

a4

T
x1 +

a6

T 2
. (281)

The special fiber is computed by setting all the ti = 0. The special fiber is
then

y2
1 +

a3

T
y1 = +a2x

2
1 +

a4

T
x1 +

a6

T 2
. (282)

As in the analysis of the new types Kn, we are going to examine b8, which is
defined with equation 15. It is also the discriminant of quadrics such as 281.

Supposing φ2 6= (0, 0, ∗), there are no In or Kn with n odd and no K ′

n

reduction types in the collision. Then for each ti in the discriminant locus
vti(b8) = ni, and for ti not in the discriminant locus vti(b8) = 0. One can
check that the assumption of being settled also forces b8 to have normal
crossings, so that b8

T 2 is a unit. We check this using the phi2 morphism.

In this case the quadric 281 is non degenerate, and the last special fiber is a
multiplicity 1 component. Since the special fiber is regular, so is the scheme
at points on the special fiber. The total special fiber in this case is a chain
of components: one of multiplicity 1, N of multiplicity 2, and one last one
of multiplicity 1. Here

N =
∑ ni

2
(283)

Now suppose φ2 = (0, 0, ∗). This means for each i vti(a6) = ni. Further
suppose that there is at least one odd ni in the collision. Examining the
valuation of a3,a4, and a6 for this ti, we find that in the residue field κ

a3

T
=
a4

T
=
a6

T 2
= 0. (284)
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So the special fiber is the double line y2
1 = +a2x

2
1. The settled assumption

guarantees that a2 is not a square in the residue field, so the component is
not defined over κ. Furthermore it has only one rational point x = y = 0,
and this point is not a singular point of the scheme.

Thus every point of X ′′ over p in this patch is regular, and we have computed
the entire special fiber. Indeed every point of X ′′ over p is regular.

The total special fiber in this case is a chain of components: one of multiplic-
ity 1, and N of multiplicity 2. The number of multiplicity two components
is given by

N =

∑

ni − 1

2
. (285)

Now suppose still that φ2 = (0, 0, ∗), but there is no odd ni in the collision.
Thus the collision consists entirely of In and K ′

n types and each n is even.
We are assuming there is at least one K ′

n type, otherwise we would be in the
pure In collision situation. For the ti corresponding to the K ′

n type, we have
v(a3) >

n
2
, and v(a4) >

n
2
. So the special fiber is the double line

y2
1 = +a2x

2
1 +

a6

T 2
. (286)

The settled assumption guarantees that a2 is not a square in the residue field
and also that the double line has no rational points at all. As in the analysis
of the K ′

n type, the special fiber is regular, and thus so is the scheme at
points on the special fiber. The total special fiber in this case is a chain of
components: one of multiplicity 1, and N of multiplicity 2. The number of
multiplicity two components is given by

N =
∑ ni

2
. (287)

To summarize the special fiber in a collision of types Kn, K ′

n, and In types is
again a configuration of components of one of the Kn, K ′

n, and In types. If
there are no In or Kn with n odd and no K ′

n reduction types in the collision
the special fiber is of type Km for some even m. If there is one In or Kn with
n odd, the special fiber is of type Km for some odd m. If there are no In or
Kn with n odd, but one K ′

n type the special fiber is of type K ′

m.
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16.8.4 The Tn or I∗n (n odd) Collisions

In this section we assume that the modulus of the collision is 2, and that
there is one main type involved in the collision. We assume that this main
type I∗n or Tn has n odd. As above, we note that the DVR corresponding to
such an In type must have residue characteristic 0. We can further assume
that among the In, Kn, or K ′

n types present in a collision at most one of the
n’s is odd.

We also assume that at least one of a3, a4, and a6 are {ti} normal elements,
depending on the value of φ2(p).

This case includes several general types of collisions. We describe these
categories in a list.

1. At least one In or Kn odd type.

2. The main type is Tn, no odd types.

3. The main type is I∗n, at least one K ′

n type, no odd types.

4. The main type is I∗n, no K ′

n type, no odd types.

We group these cases together, since the Weierstrass equation has a similar
form in each case, and the same blow ups are required in each case.

In the computations that follow, let s be the uniformizing parameter for Op

such that s = 0 defines the I∗n or Tn type. Let {ti} be the uniformizing
parameters that define the In, Kn, or K ′

n types.

We begin with the standard subscheme of Op[x, y] defined by a Weierstrass
equation.

y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6. (288)

such that for s and each ti
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a1 a2 a3 a4 a6

vs ≥ 1 1 ≥ n+3
2
≥ n+5

2
≥ n+ 3

vti ≥ 1 0 ≥ ni

2
≥ ni

2
≥ ni

(289)

We are going to perform the blow ups prescribed by Tate’s algorithm for
each of the reduction types over s = 0 and ti = 0, and compute the special
fiber over the closed point of Op. To do this we set all s = ti = 0.

The beginning special fiber is a rational curve of multiplicity 1. The first
blow ups will be the same as those described in the Ti new type, even if
the main type is a I∗n type. We will perform these first, then the ni

2
blow

ups for each component ti = 0. Briefly recalling the sequence of blow ups
for the Ti new type, we first blow up at the ideal point (x, y, π). For the
third coordinate patch put x = x1s and y = y1s. This patch is the affine
subscheme of Op[x1, y1] defined by

y2
1 + a1x1y1 +

a3

s
y1 = x3

1s+ a2x
2
1 +

a4

s
x1 +

a6

s2
. (290)

The special fiber consists of a multiplicity 2 rational curve defined by y2
1 = 0

Next blow up at the double line (y1, s). For the second coordinate patch put
y1 = y2s. This patch is the affine subscheme of Op[x1, y2] defined by

y2
2s+ a1x1y2 +

a3

s
y2 = x3

1 +
a2

s
x2

1 +
a4

s2
x1 +

a6

s3
. (291)

The special fiber is x3
1 + a2

s
x2

1 = 0. This consists of the multiplicity 1 rational
curve x+ a2

s
= 0, and the double line x2

1 = 0.

Next blow up at the double line (x1, s). For the second coordinate patch put
x1 = x2s. This patch is the affine subscheme of Op[x2, y2] defined by

y2
2 + a1x2y2 +

a3

s2
y2 = x3

2s
2 + a2x

2
2 +

a4

s2
x2 +

a6

s4
. (292)

The special fiber is y2
2 = 0. since there are powers of ti in the ai coefficients.

Supposing n = 1, we stop. Otherwise repeat the last two blow ups. The
pair of blow ups is performed a total of n+1

2
times. So far including the
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last coordinate patch the special fiber is two multiplicity one rational curves
connected to a chain of n+1 multiplicity 2 curves. The last coordinate patch
has the form

y′2 + a1x
′y′ +

a3

s
n+3

2

y′ = x′3s
n+3

2 + a2x
′2 +

a4

s
n+3

2

x′ +
a6

sn+3
. (293)

As in the previous subsection 16.8.3, we blow up successively at ideals such
as (x′, y′, ti). We repeat these types of blow up for a total of ni

2
times for

each component ti = 0. After each blow up, we examine the third coordinate
patch. Each such blow up produces a new multiplicity 2 component in the
special fiber, except perhaps the last.

We now now examine the last coordinate patch. Define

T = Π t
[
ni
2

]

i . (294)

Here the brackets denote the greatest integer function. As in the first blow
up, each successive blow up reduces the powers of ti in a3, a4, a6, and adds
powers of ti to the x3 coefficient. Thus it is easy to see that the last coordinate
patch is given by

y′2 + a1x
′y′ +

a3

s
n+3

2 T
y′ = x′3s

n+3

2 T + a2x
′2 +

a4

s
n+3

2 T
x′ +

a6

sn+3T 2
. (295)

The special fiber is computed by setting all the s = ti = 0. Because of the
powers of s in a1, and a2, and the powers of ti in a4, these terms drop out
and the special fiber is of the form

y′2 +
a3

s
n+3

2 T
y′ =

a6

sn+3T 2
. (296)

We now determine exactly what this last addition to the special fiber is.

Suppose there is one Kn, or In with n odd. The additional power of that ti
in a3 and a6 makes the special fiber the double line y′2 = 0. Furthermore
this can only happen when φ2 = (0, 0, ∗). This means that a6

sn+3T 2 is ti times
a unit in Op, and that the patch defined by 295 is regular.
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Now suppose there are no Kn, or In types with n odd, but there is a Tn type.
Then the additional power of s in a3 makes the special fiber the double line
y′2 = a6

sn+3T 2 . Furthermore the settled hypothesis guarantees that a6

sn+3T 2 is
not a square in the residue field κ. So this last multiplicity 2 component is
not rational over κ. Since the double line has no rational points, the scheme
is regular at these points.

Also if there is a K ′

n involved in the collision there is an additional power of ti
in a3, and the addition to the special fiber is also a non rational multiplicity
2 component.

Otherwise, there is no Tn, or K ′

n, or Kn with n odd, so examining the φ2

chart 187 we see that we must have φ2 = (∗, 0, 0) or φ2 = (0, ∗, 0), because
there must be an I∗n type with n odd present. For either form of φ2 we
know that a3 is a {ti} normal element and in fact that a3

s
n+3

2 T
is a unit in Op.

This means that the quadratic 295 has distinct roots and the addition to the
special fiber is also two a multiplicity 1 components. Since these components
have multiplicity 1, the scheme is regular in this last coordinate patch.

To summarize, the special fiber is of the form Tn, I∗n, or I+
n . If there is a Kn,

or In with n odd, we have special fiber type I+
n . If there is a Ti, or K ′

n type,
we have special fiber type Tn. Otherwise, there are only I∗n, and In with n
even and Kn with n even in the collision, and then we have special fiber type
I∗n.

To count the number of multiplicity 2 components, set

N = n+

∑

ni

2
. (297)

The number of multiplicity 2 components in the I+
n or I∗n types is N+1. The

number of multiplicity 2 components in the Tn type is N .

16.8.5 The Tn or I∗n (n even) Collisions

In this section we assume that the modulus of the collision is 2, and that
there is one main type involved in the collision. We assume that this main
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type I∗n or Tn has n odd. This section covers the exact same cases as section
16.8.4, except that the type I∗n or Tn has n odd.

Thus we perform blow ups to resolve the elliptic scheme over a point p with
where one I∗n or Tn type with n odd and 1 or more In,Kn, or K ′

n types collide.

The only slight difference from section 16.8.4 is that one further double line
blow up is required for the I∗n or Tn type.

After following the blow ups of the previous section, we obtain the coordinate
patch

y′2s+ a1x
′y′ +

a3

s
n+2

2

y′ = x′3s
n
2 +

a2

s
x′2 +

a4

s
n+2

2

x′ +
a6

sn+3
. (298)

The special fiber is the double line a2

s
x′2 = 0. At this point there are n + 1

double lines.

We then blow up as above at ideals of the form (x, y, ti). Each blow up also
produces another multiplicity component. In this case the last coordinate
patch is

y′2s+ a1x
′y′ +

a3

s
n+2

2

y′ = x′3s
n
2 T +

a2

s
x′2 +

a4

s
n+2

2 T
x′ +

a6

sn+3T 2
. (299)

where T is defined as above in 280. In this case a1 = a3 = 0 in the special
fiber, so the part of the special fiber in this coordinate patch is

0 =
a2

s
x′2 +

a4

s
n+2

2 T
x′ +

a6

sn+3T 2
. (300)

As above we determine the special fiber in this last patch by looking at
whether or not there is an In, or Kn with n odd, then whether or not there is
a Tn or K ′

n present in the collision. The results are the same as the previous
case, and only the computation was slightly different.

Thus each point of X ′′ above p is a regular point, and the special fibers type
were given in section 16.8.4. The formulas for the number of multiplicity 2
components given in section 16.8.4 also hold in this n even case.
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16.8.6 Summary of Multiple Collision Fibers

Here we summarize the collisions involving reduction types in one of the
infinite families. These collisions may involve the standard In or I∗n types, or
some of the new types Kn,K ′

n, or Tn.

If all reduction types in the collision are of type In, we know that the special
fiber is also of type In. Otherwise, we describe the special fiber at p based
on three properties. The first is: does the collision contains a I∗n, Tn, or no
main type? Second, does it contains a K ′

n type? Third, do any of the In, or
Kn types have n odd?

Proposition 16.6 (Multiple Special Fibers)
Let X ′′ be the regular model of a limited Weierstrass elliptic scheme over a
base B, constructed by algorithm 16.3. Let pεB, and let {ti} be a discriminant
compatible set of uniformizing parameters at p. Suppose the reduction types
T1 and T2 are main type and all other types are zero types.

Let X ′′ be the regular model of a limited Weierstrass elliptic scheme over a
base B. Let pεB, and let {ti} be a discriminant compatible set of uniformizing
parameters at p. Suppose the modulus of the collision is 1 or 2, and that the
reduction types involved in the collision are types In, I

∗

n, Kn, K
′

n, and Tn.

If all reduction types are Ini
, then the special fiber is also of type IN with

N =
∑

ni (301)

Otherwise the reduction type is one of I∗n, I
+
n , Kn, K

′

n, or Tn. The special
fiber only depends three pieces of data

1. What main type, if any is in the collision.

2. Whether or not a K ′

m type is in the collision.

3. Whether or not a In or Kn type with n odd is in the collision.

Chart 303 specifies the special fiber based on these criteria. The number of
multiplicity 2 components in the special fiber is specified in last column, as a
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function of N , where

N = n+
∑

[
ni

2
] (302)

where n is the subscript of the main type I∗n or Tn and the ni are the subscripts
of the zero types In, Kn, or K ′

n.

MainTypes K ′

m Types Oddn Special F iber 2− Components
− ∗ yes Km N
− no no Km N − 1
− yes no K ′

m N
I∗n ∗ yes I+

m N + 2
Tn ∗ yes I+

m N + 2
Tn ∗ no Tm N + 1
I∗n yes no Tm N + 1
I∗n no, no I∗m N + 1

(303)

16.8.7 Collision Summary

By the compuations of sections 16.6, 16.7, and 16.8, every point of the scheme
X ′′ → B constructed in section 16.3.1 is regular. This proves theorem 16.2,
which states that algorithm 16.3 does suffice to desingularize a limited Weier-
strass elliptic scheme. This concludes the main theorem 1.2 of the paper.

In section 17 we will assemble the additional information about the fibers of
the regular model.
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17 Special Fibers

In this section we strengthen theorem 1.2 by describing explicitly the fibers
over each point of the base. First let us give a name to such a model.

Definition 17.1 Let B be a regular Noetherian n - dimensional integral sep-
arated scheme. Let X → B be a Weierstrass elliptic scheme over B. Suppose
there exists a blow up B ′ → B defining the base change

Xmin ↔ X ′ → X
↓ ↓ ↓
B′ = B′ → B

and a minimal Weierstrass elliptic scheme Xmin birational to X ′ over B′.

Suppose that Xmin → B′ is a limited Weierstrass elliptic scheme, and that
X ′′ → Xmin is the series of blow ups specified by algorithm 16.3. Then
X ′′ → B′ is a Flat Collision Model of X → B.

Corollary 17.2 (Special Fiber Possibilities)
Let B be a regular Noetherian n - dimensional integral separated scheme. Let
X → B be a Weierstrass elliptic scheme over B. Suppose X ′′ → B′ is a flat
collision model for X → B.

The special fibers of X ′′ are nonsingular elliptic curves, reduction types on
Kodaira’s list, or are one of the following types defined in section 6.

X1, X2, Y 1, Y 2, Y 3, Z1, Z2, Kn, K
′

n, Tn, (304)

the collision type
I+
m (305)

or a chains of rational curves with multiplicities

1− 2− 3 (306)

1− 2− 3− 4− 2 (307)

1− 2− 3− 2 (308)

1− 2− 3− 2− 1 (309)

180



Corollary 17.3 (Recognize Fiber Types)
Let B be a regular Noetherian n - dimensional integral separated scheme. Let
X → B be a Weierstrass elliptic scheme over B. Suppose X ′′ → B′ is a
flat collision model for X → B. The fiber types in corollary 17.2 have all
appeared as either special fibers in a flat collision model over bases with no
points or residue characteristic 2 or 3, or as special fibers in a flat collision
model over a DVR of residue characteristic 2 or 3.

Furthermore the special fiber at a collision point p in the base is determined
by the reduction types involved in the collision. In the following corollary we
specify a collision type by what reduction types are involved.

Corollary 17.4 Let B be a regular Noetherian n - dimensional integral sep-
arated scheme. Let X → B be a Weierstrass elliptic scheme over B. Suppose
X ′′ → B′ is a flat collision model for X → B.

Then X ′′ has only collisions of type specified in chart 310. Suppose pεB ′ is
a collision point of the elliptic scheme.

The special fiber of X ′′ → B′ at p is is one of the types listed in corollary
17.2, and it is determined by the reduction types of each component of the
discriminant divisor passing through p as specified in 310.

Further details concerning the various types of collisions may be found in
sections 16.6, 16.7, and 16.8.

We make some remarks about chart 310.

1. At least two types must be present in each collision.

2. All main types listed must be present.

3. Zero or more of the zero types listed may be present.

4. The notationK ′n∗ means at least oneK ′n type must be in the collision.
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Main 1 Main 2 ZeroTypes Oddn Char Special F iber
II I∗0 X1, Y 1, Z1 any 1− 2− 3
II X2 X1, Y 1 2 1− 2− 3
II Z2 Z1 3 1− 2− 3
IV I∗0 X1, Y 1, Z1 any 1− 2− 3− 2
IV X2 X1, Y 1 2 1− 2− 3− 2
IV Z2 Z1 3 1− 2− 3− 2
Y 2 I∗0 X1, Y 1 2 1− 2− 3− 2
Y 2 X2 X1, Y 1 2 1− 2− 3− 2
II IV ∗ X1, Y 1, Z1 any 1− 2− 3− 4− 2
II Y 3 X1, Y 1 2 1− 2− 3− 4− 2
III I∗0 X1, Y 1 any 1− 2− 3− 2− 1
III X2 X1 2 1− 2− 3− 2− 1

− − In any In
− − In, Kn, K

′n yes 2 Kn

− − In, Kn no 2 Kn

− − In, Kn, K
′n∗ no 2 K ′

n

I∗n − In, Kn, K
′n yes any I+

m

Tn − In, Kn, K
′n yes 2 I+

m

Tn − In, Kn, K
′n no 2 Tm

I∗n − In, Kn, K
′n∗ no 2 Tm

I∗n − In, Kn no any I∗m
II − X1, Y 1, Z1 2, 3 II
III − X1, Y 1 2 III
IV − X1, Y 1 2 Y 2
I∗0 − X1, Y 1 2 I∗0 , X2
I∗0 − Z1 3 Z2
X2 − X1 2 X2
IV ∗ − X1, Y 1 2 Y 3
Y 3 − X1, Y 1 2 Y 3
III∗ − X1, Y 1 2 III∗

II∗ − X1, Y 1, Z1 2, 3 II∗

(310)
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18 Overview

In section 1 I state the goal of constructing a flat regular elliptic subscheme.

In section 2 I consider general Weierstrass equations and schemes.

In section 3 I consider extending Tate’s algorithm to non perfect residue
fields.

In section 4 I display charts of Weierstrass coefficient valuations and define
types.

In section 5 I prove that we can translate to pre-chart form.

In section 6 I compute new special fibers by computing with blow ups.

In section 7 I summarize new reduction types geometrically.

In section 8 I define higher dimensional elliptic schemes and consider trans-
lations.

In section 9 I consider blowing up the base and computing the exceptional
divisor.

In section 10 I define groups of reduction types, assume X is pre-settled, and
define φ.

In section 11 I show that we can translate to multiple chart form.

In section 12 I assume X is settled and define ψ.

In section 13 I discuss stable properties of settled elliptic schemes.

In section 14 I reduce collisions with combinatorics.

In section 15 I show a J morphism implies pre-settled.

In section 16 I construct the regular model, check regularity and compute
collision fibers.

In section 17 I summarize all special fibers computed.
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