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Kodaira and Néron classified and described the geometry of the special fibers of the
Néron model of an elliptic curve defined over a discrete valuation ring with a perfect residue
field. Tate described an algorithm to determine the special fiber type by manipulating the
Weierstrass equation. In the case of non-perfect residue fields, we discover new fiber types
which are not on the Kodaira-Néron list. We describe these new types and extend Tate’s
algorithm to deal with all discrete valuation rings. Specifically, we show how to translate
a Weierstrass equation into a form where the reduction type may be easily determined.
Having determined the special fiber type, we construct the regular model of the curve
with explicit blow-up calculations. We also provide tables that serve as a simple reference
for the algorithm and which succinctly summarize the results.
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discrete valuation ring, flat regular model

1. INTRODUCTION

Useful models of elliptic curves reflect the curve’s arithmetic in the geometry of
the special fibers. One such model, defined over a discrete valuation ring (DVR), is
the Néron model [18]. This model is a flat regular minimal model of an elliptic curve
whose fibers contain some information about the structure of the rational points on
the curve. The Néron model is defined in terms of a universal mapping property,
which makes it automatically a group scheme. Kodaira and Néron classified the
possible geometries of the special fibers of these regular schemes. Given a Weier-
strass equation defining an elliptic curve over a DVR, Tate presents an algorithm
to determine the reduction type of its Néron model. This algorithm may be inter-
preted as a recipe for the resolution of the singularities on a one-dimensional elliptic
scheme. However, both the Kodaira-Néron classification and Tate’s algorithm only
apply to discrete valuation rings with perfect residue fields.

This paper focuses on the construction of regular elliptic schemes defined over
DVRs whose residue field is not perfect. Surprisingly, some of the resulting special
fibers are not on the Kodaira-Néron list. We first provide a list of the additional
special fiber types, and describe the geometry of each new type. Next, given a
Weierstrass equation with coefficients in any DVR, we provide an algorithm to
determine which standard or new reduction type it defines, thereby extending Tate’s
algorithm to allow non-perfect residue fields. As in the classical case, such an
algorithm also determines the sequence of blow-ups required to construct the regular
model, and the smooth part of these models is still a Néron model.

Elliptic curves are often first considered over number fields, where the residue
field associated to each prime ideal is finite and thus perfect. However, it is also
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natural to consider discrete valuation rings over non-perfect residue fields. For
example, to study a one parameter family of elliptic curves defined over Z, one
considers an elliptic scheme over the base Z[T]. Not all localizations of this ring
have a perfect residue field1.

Recently, the new reduction types defined in this paper have been applied to the
study of the Grothendieck pairing on the component group of an elliptic curve, in
the case of a non-perfect residue field. Bertapelle and Bosch, and Lorenzini[3, 16]
have shown that this pairing is not always a perfect pairing, as was previously
conjectured[9]. With the new reduction types, Lorenzini produces explicit examples
on which Grothendieck’s pairing is degenerate. The construction of one-dimensional
regular models can also be used as a building block for the construction of flat
regular models of elliptic schemes defined over surfaces, or higher dimensional base
schemes. This construction, and the material in this article, was the subject of the
author’s PhD thesis[23]. De-singularizing elliptic threefolds in characteristic 0 was
studied earlier by Miranda.[17]

I would like to thank my Ph.D. advisor, Barry Mazur, for guidance on the
thesis work, Joe Harris, for teaching me some algebraic geometry, Joe Silverman,
for encouraging me to publish this article and for the books that inspired this
research, Dino Lorenzini, for his careful reading, Kelly Morgan, for her editorial
help, and the anonymous reviewer, for the many detailed comments.

Organization: The rest of this article is organized as follows. In section 2, we
present background and notation used throughout the paper, and describe our re-
sult. In section 3 we describe the geometry of the new special fiber types. Next,
in section 4, we present a series of conditions on the coefficients of a Weierstrass
equation which are sufficient to determine the reduction type. These conditions
are succinctly presented in several tables. In section 5, we prove that a Weierstrass
equation can always be translated to a form satisfying such conditions, thus pro-
viding an effective algorithm to determine the reduction type. Finally, in section
6 we discuss how the regular model is constructed using blow-ups, and we carry
out the construction for explicit examples which yield new special fiber types. We
conclude with suggestions for further related research.

2. BACKGROUND AND NOTATION

Before describing in further detail our results, we present notation and review
some background material.

Schemes over a DVR:
Throughout this paper we let R denote a discrete valuation ring, and let K be

its field of fractions. Let m be the unique maximal ideal of R, let κ = R/m be the
residue field, and let κ be an algebraic closure of κ. Let v be the valuation on R,
and let π be a uniformizer for R, so that v(π) = 1. For every ring we denote its
spectrum with Spec(·), and throughout this paper we deal with schemes of finite
type over the base scheme, S = Spec(R). For each such scheme X/S, we define the
generic fiber of X to be the variety X × Spec(K), and the special fiber of X to be
the variety or scheme X̃ = X × Spec(κ).

For any variety V/K, a scheme X/S is a model for V if the generic fiber of X
is the variety V . We also call the special fiber X̃ the reduction of V in X.

1Localizing the ring Z[T] at the ideal (T ) yields a DVR with perfect residue field Q. Localizing
at (2), however, yields a DVR with residue field F2(T), which is not perfect.
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Elliptic Schemes: To assist the reader in following our explicit calculations, we
recall the standard polynomials associated with elliptic curves. First, a Weierstrass
equation is a cubic equation of the form

f = y2 + a1xy + a3y − (x3 + a2x
2 + a4x + a6) = 0, (1)

where ai ∈ K. We also define the usual quantities b2, b4, b6, b8, c4, c6, δ, j:

b2 = a2
1 + 4a2, b4 = 2a4 + a1a3, b6 = a2

3 + 4a6, (2)

b8 = a2
1a6 + 4a2a6 − a1a3a4 + a2a

2
3 − a2

4, (3)

c4 = b2
2 + 24b4, c6 = b3

2 + 36b2b4 − 216b6, (4)

δ = −b2
2b8 − 8b3

4 − 27b2
6 + 9b2b4b6, j = c3

4/δ. (5)

We define an elliptic curve E/K, to be the subvariety of P2(K) which is cut out
by a Weierstrass equation with nonzero discriminant δ, in the affine neighborhood
Spec(K[x, y]). Our main object of interest, however, is two-dimensional.

Definition 1. An Elliptic Scheme, C/R, is a two-dimensional projective scheme
flat over Spec(R) whose generic fiber is an elliptic curve E/K. For each Weierstrass
equation f = 0 with coefficients in R, (f ∈ R[x, y], δ 6= 0), we define the Elliptic
Scheme defined by f to be the closure of Spec(R[x, y]/(f)) in P2(S).

We denote the special fiber of an elliptic scheme by C̃ = C⊗Rκ̃, and the geo-
metric special fiber by C = C⊗Rκ.

Regular Models: Recall that a local ring of dimension d with maximal ideal mp

is a regular local ring if dim(mp/m
2
p) = d. A scheme S is then called regular or

non-singular if for every point p ∈ S, the local ring Op is regular. If Op is not
regular, S is said to have a singularity at p.

We consider the regularity of several objects: (1) the special fiber C̃, (2) the
geometric special fiber C, and (3) C itself, which is a two-dimensional scheme. The
geometric special fiber C of an elliptic scheme defined by the Weierstrass equation
f = 0 is singular if and only if v(δ) > 0, in which case the singularity is either a
node or a cusp. A more general elliptic scheme C, defined with several coordinate
patches, can be more complicated. Considering an affine coordinate patch of the
form Spec(R[x, y]/(g)), (where g ∈ R[x, y]) 2, the singular points p ∈ C, are those
for which both df

dx = 0 and df
dy = 0, (mod π). Such a singular point in C may, or

may not, be κ-rational, and if not, its image under the map C → C̃ can be a regular
point of C̃. Finally, a singular point p̃ ∈ C̃, may or may not be a singular point
of (the surface) C. This can be tested directly from the definition: it is singular if
dim(mp/m

2
p) > 2.

The regular models we construct will also be proper, flat, and minimal. As-
suming that κ is perfect, the smooth part of a regular, proper, minimal model of
an elliptic curve E/K is the Néron model of the curve, and in particular, a group
scheme. We refer the reader to [6, 8, 10, 22] for a definition and discussion of these
terms.

Minimal Weierstrass Equations: An R-translation of a Weierstrass Equation
is an R-linear change of variables of the form x 7→ x′ + α, y 7→ y′ + βx′ + γ, where
α, β, γ ∈ R. See [21] for the formulas explaining how the Weierstrass coefficients
ai change under an R-translation.

2This is an example. Not every coordinate patch must be in such a form.
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Definition 2. A Weierstrass Equation f ∈ R[x, y] is Minimal if there is no R-
translation for which the translated coefficients a′

i satisfy πi|a′

i for i ∈ {1, 2, 3, 4, 6}.

A minimal Weierstrass equation can be used to construct a minimal model. See
[10, 22] for a description of the relationship between a minimal Weierstrass equation
and a minimal model.

Kodaira-Néron Special Fibers: We now define some terms to describe the
geometry of the special fibers, and review Kodaira’s notation for standard reduction
types.

The special fiber is neither required to be irreducible nor reduced, so we define
the components of a curve over κ or κ to be the maximal irreducible subschemes. A
component is a rational curve if its reduced subscheme, L, is isomorphic to P1/κ.
The multiplicity of a rational curve locally defined by a polynomial f is the valuation
of f in the local ring OL (which is a DVR). When two distinct components meet at
a point p, the intersection defines a zero dimensional scheme supported at p. The
degree of this scheme is called the local intersection multiplicity of the components at
p. Two components intersect transversally at a point if the intersection multiplicity
is one.

Kodaira and Néron classified the special fibers into reduction types according to
the geometry (genus and regularity) of the reduced components, the multiplicity
of each component, and the local intersection multiplicity between pairs of com-
ponents. The following table presents the Kodaira symbol of each type, and the
number of components (when κ is algebraically closed). Note that the symbols In,
and I∗n actually denote a family of reduction types, one for each integer n ≥ 1.

I0 In II III IV I∗

0 I∗n IV ∗ III∗ II∗

1 n 1 2 3 5 5+n 7 8 9
(6)

The familiar types I0, I1, and II each consist of only a single component,
namely an elliptic curve, a nodal cubic, and a cuspidal cubic. Type III has two
components meeting tangentially, and each remaining type consists of two or more
rational curves which intersect transversally. For further description of these types,
including the configuration and multiplicity of the components, we refer the reader
to [13, 18, 22].

Lastly, we remark that when κ is not algebraically closed, one or more of the
components in the geometric special fiber C may be identified in C̃.

Blow-ups: It is conjectured that every scheme is birational to a regular scheme,
but this has only been proved for certain classes of schemes[1, 11, 12], including the
arithmetic surfaces C/R considered in this paper. The construction of a regular
model of a scheme is called a resolution of singularities. Given that the general
resolution of singularities is still open, it is not obvious that general elliptic schemes
always have regular models.

One technique to create a regular model is to use the blow-up construction. For
each subscheme T of S the blow-up of S along T is a scheme S ′ with a birational
morphism S′ → S, which is an isomorphism outside of T . When S = Spec(R) is
affine, and {gi ∈ R}, cut out T , the {gi} naturally define a rational map S → Pk(R).
In this case we can define the blow-up of S along T to be the closure of the graph
of φ in S ×R Pk(R). In practice, one describes the blow-up scheme in terms of
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the k + 1 standard affine coordinate neighborhoods of S ×R Pk(R), effectively
performing a substitution of variables in each neighborhood. See [7, 8, 10, 22] for
several different, but equivalent, complete definitions of a blow-up which apply to
more general schemes T ⊂ S.

By repeating this blow-up construction for wisely chosen subschemes T contain-
ing the singular points, one hopes to obtain a regular scheme S ′′ and a birational
morphism S′′ → S.

Tate’s algorithm: It is known that when κ is perfect, a flat proper regular minimal
model of an elliptic curve always exists. Tate’s algorithm is a procedure used to
determine the special fiber type of such a good model, when it is defined by a
minimal Weierstrass equation3.

The constructive version of Tate’s algorithm uses the blow-up construction to re-
solve the singularities on the elliptic scheme SpecR[x, y]/(f), defined by the Weier-
strass equation f = 0.

At each stage of the algorithm, the scheme is checked for regularity, and if still
singular, it is replaced with the blow-up along a certain subscheme T .The resulting
scheme, defined locally in multiple coordinate patches, is the regular model sought.
Tate conveniently chose to translate the coordinates of the Weierstrass equation
in the successive stages of his algorithm, so that the existence and location of the
singularities could easily be determined by examining the valuations of the ai, or
bi.

The non-constructive version of Tate’s algorithm skips the actual blow-up com-
putations, but only explains how to translate the coordinates of the original Weier-
strass equation so that the required sequence of blow-ups, and therefore the re-
duction type, can be determined directly from the valuations of the ai (or of the
quantities b2, b4, b6, b8, c4, c6, and δ).

Our results: We have extended Tate’s algorithm to the case when κ is not perfect.
We posed the question:

“Do the blow-ups in Tate’s algorithm still produce a regular model?”

We found that they often do, but not always. When they do not, we discovered
new special fiber types in the regular minimal model.

The first result is that only finitely many new reduction types (and families of
reduction types) that arise. In other words, with a few modifications, this sequence
of blow-ups still always terminates, and produces a regular scheme. We list and
describe these new reduction types.

Secondly, we produce a series of tables which help to concisely summarize this
extention of Tate’s algorithm. For every reduction type, we record the form of
the Weierstrass equation, after it has been translated, thus producing sufficient
conditions on the {ai} for each type.

Next, we present a simple, effective procedure to translate any Weierstrass equa-
tion into such a form, thus completing the determination of the special fiber when
κ is not perfect.

Lastly, we return to the construction of the regular model, and compare the
required sequence of blow-ups to those specified in Tate’s original algorithm. By
verifying the regularity of each kind of resulting scheme, we have a proof that our
extention of Tate’s algorithm correctly determines the reduction type.

3When κ is perfect, and char(κ) 6= 2, 3, it is well known that the reduction type can be easily
determined by examining δ, and j.
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3. A DESCRIPTION OF THE NEW REDUCTION TYPES

In this section, we list and describe the new special fiber types. To complement
the standard Kodaira symbols listed above in (6), we now introduce some new
symbols for the extra reduction types, and record the number of components of
each in C. Note that the symbols Kn, K ′

n, and Tn each denote a family of reduction
types, indexed by n ∈ Z, n ≥ 1.

Z1 Z2 X1 X2 Y1 Y2 Y3 K2n K ′

2n K2n+1 Tn

1 3 1 4 1 2 5 n+1 n+1 n+1 n+4
(7)

We are now going to describe the geometry of these curves C̃/κ. We do this by
first describing the geometric special fibers C/κ, and then describing the behavior
of the singular points or curves under the mapping ρ : C → C̃.

If p is a point in C, and p̃ = ρ(p) is its image in C̃, we say that ρ(p), ramifies
in C to a multiplicity k point if ρ−1(p̃) has multiplicity k > 1. We use the same
terminology for a curve p̃ ∈ C̃. Often, singular points in C become regular points
in C̃. We also define the smooth locus of points in C̃ to be the open subscheme
containing only points whose inverse image in C is reduced and non-singular.

3.1. New Types with Residue Characteristic 3

When char(κ) = 3, the special fiber is either a standard Kodaira type listed
above in list (6), or one of the two new types, Z1, or Z2.

• Type Z1: Geometrically, type Z1 is a cubic curve with a cusp p ∈ C, which
is not κ-rational. Its image, ρ(p) ∈ C̃, is a regular point which ramifies in a degree
three extention of κ (Fig. 1).

• Type Z2: Geometrically, type Z2 consists of a chain of three rational curves,
intersecting transversally, of multiplicity 1, 2, and 3. The first two curves are κ-
rational, and the last, p, is not. Its image, ρ(p) ∈ C̃, is generically regular, and it
ramifies in a degree three extention of κ (Fig. 2).

FIG. 1 Types X1, Y1, and Z1

3.2. New Types with Residue Characteristic 2

When char(κ) = 2, the special fiber is either a standard Kodaira type listed
above (6), or any one of the new types, except Z1, or Z2.
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FIG. 2 Type Z2

• Type X1: Geometrically, type X1 is a cubic curve with a cusp p ∈ C, which is
not κ-rational. Its image, ρ(p) ∈ C̃, is a regular point which ramifies in an extention
of κ of degree two or four4 (Fig. 1).

• Type X2: Geometrically, type X2 consists of four rational curves, intersecting
transversally, as follows. A first κ-rational curve of multiplicity 2, meets two rational
curves of multiplicity 1, and a second curve of multiplicity 2. This last curve, p, is
not κ-rational. Its image, ρ(p) ∈ C̃, is generically regular, and ramifies in a degree
two extention of κ (Fig. 3).

• Type Y1: Type Y1 is geometrically a cubic curve with a cusp p ∈ C, which is
not κ-rational. Its image, ρ(p) ∈ C̃, is a regular point which ramifies in an extention
of κ of degree two (Fig. 1).

• Type Y2: Geometrically, type Y2 consists of two rational curves of multiplic-
ity 1 and 2, intersecting transversally. The second curve, p, is not κ-rational. Its
image, ρ(p) ∈ C̃, is generically regular, and ramifies in a degree two extention of κ
(Fig. 4).

• Type Y3: Geometrically, type Y3 consists of a chain of five rational curves
of multiplicity 1, 2, 3, 4 and 2, intersecting transversally. The first three curves are
κ-rational, but the last two, p and p′ are not. The image of the first, ρ(p) ∈ C̃ is
of multiplicity 2 over κ, and thus everywhere singular. The image of the second,
ρ(p′) ∈ C̃, is generically regular. Both of ρ(p) and ρ(p′) ramify in a degree two
extention of κ (Fig. 4).

FIG. 3 Type X2

• Types Kn (n odd): Geometrically, the types Kn for odd n > 1 consist
of a chain of one rational curve, and n−1

2 multiplicity 2 curves, which intersect
transversally. Each multiplicity 2 component is not κ-rational, but has a regular
image in C̃ which ramifies in a degree two extention of κ (Fig. 5). Type K1 consists

4The degree depends on the field in which both coordinates of the cusp are rational.

7



FIG. 4 Types Y2 and Y3

of a single component, a cuspidal cubic with a rational cusp. (It is identical to type
II).

• Types Kn (n even): Geometrically, the types Kn for even n > 2 have the
same configuration as the types Kn for odd n, except there are n−2

2 multiplicity
2 components and an additional rational curve intersecting the last multiplicity 2
component transversally (Fig. 5). Type K2 consists of two rational curves meeting
tangentially at a point. (It is identical to type III).

• Types K′

n
(n even): Geometrically, the types K ′

n for even n have the
same configuration as the types Kn for odd n, except there are n

2 multiplicity 2
components. The last component contains no κ-rational point, except the point at
which it intersects the previous component (Fig. 5).

FIG. 5 Types Kn (n ∈ Z, n > 0), and types K ′

n, (n ∈ 2Z, n > 0)

FIG. 6 Type Tn (n ∈ Z, n > 0)

• Types Tn (n > 0): Geometrically, the types Tn consist of two rational curves
meeting the first component of a chain of n−1

2 multiplicity 2 curves, all intersecting
transversally. All components are κ-rational, except the last one, p. Its image,
ρ(p) ∈ C̃, is generically regular, and ramifies in a degree two extention of κ (Fig.
6).

Having defined and described these new special fiber types, we now assert that
this list is complete.

8



Theorem 3.1 (Reduction Types). Let C/R be a flat proper regular minimal
model of E/K. Then the special fiber, C̃, is either a standard reduction type in
Kodiara’s list (6), or one of the new reduction types in the list (7), and defined in
this section.

The proof of Theorem 3.1 will be completed later, in section 6 when we will
have constructed the regular model of the elliptic curve defined by any Weierstrass
equation.

4. VALUATIONS OF WEIERSTRASS COEFFICIENTS

In this section we associate a set of conditions on the Weierstrass coefficients to
each reduction type. Although not every Weierstrass equation meets such criteria,
at least these conditions are sufficient to determine the reduction type.

The conditions are succinctly presented in several tables, where each column
corresponds to a different reduction type. When κ is perfect, such conditions can
be expressed completely in terms of the valuations of the Weierstrass coefficients.
In general, however, other kinds of conditions will be required, and we list them
here.

1. v(φ) = a, for φ ∈ {a1, a2, a3, a4, a6, b2, b4, b6, b8, c4, c6, δ}.

2. v(φ) ≥ a, for φ ∈ {a1, a2, a3, a4, a6, b2, b4, b6, b8, c4, c6, δ}.

3. The reduction ai

π
a (mod π) is not a square in κ.

4. The reduction ai

π
a (mod π) is not a cube in κ.

5. A specified auxiliary polynomial has distinct roots, or not.

6. A specified auxiliary curve, f ′, contains no κ-rational points.

Table Notations: These six kinds of conditions are described with entries in
a table, as follows. Fixing a reduction type, the entry in the row labeled v(φ)
represents one condition, according to the following notation. An integer a means
v(φ) = a. The symbol a+ means v(φ) ≥ a. The symbol ans denotes the condition
that φ/πa (mod π) is not a square. Similarly, the symbol anq denotes the condition
that φ/πa (mod π) is not a cube. The symbol ant denotes the condition that the
quadratic polynomial Y 2 = a2X

2 + a6

πa contains no κ-rational points. We define the
element dF to be a2a4 − a6; its valuation determines whether or not the auxiliary
polynomial (13) has distinct roots.

We present the tables of conditions according the the characteristic of κ, starting
with char(κ) = 0 or char(κ) ≥ 5.

4.1. Char 6= 2, 3, General Form

Not surprisingly, when char(κ) 6= 2, 3, any set of conditions which suffice to
determine the reduction type when κ is perfect are also sufficient when κ is not
perfect. In particular, this implies that when char(κ) 6= 2, 3, none of the new
reduction types appear as the special fiber of a regular model, and additionally, the
reduction type may be still be determined from v(δ), and v(j) alone.

With this in mind, we still choose to present general conditions on the Weier-
strass coefficients without completing the square and assuming that a1 = a3 = 0.
This way the data contained in the following tables serves as the base case which
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TABLE 1
Standard Kodaira types for Tate’s algorithm (char(κ) 6= 2, 3).

Type I0 In II III IV I∗

0 I∗n IV ∗ III∗ II∗ o/w
v(a1) 0+ 1+ 1+ 1+ 1+ 1+ 1+ 1+ 1+ 1+

v(a2) 0+ 1+ 1+ 1+ 1+ 1 2+ 2+ 2+ 2+

v(a3) 1+ 1+ 1+ 1+ 2+ 2+ 2+ 3+ 3+ 3+

v(a4) 1+ 1+ 1 2+ 2+ 3+ 3+ 3 4+ 4+

v(a6) 1+ 1 2+ 2+ 3+ 4+ 4+ 5+ 5 6+

v(b2) 0 1
v(b4) 1 3
v(b6) 1 2 4 5
v(c4) 0 1 2 3
v(c6) 1 2 3 4 5
v(d) 0 n 2 3 4 6 7+ 8 9 10 12+

will highlight the differences that appear later, when char(κ) = 2 or 3. These condi-
tions are also a good reference when constructing the models with blow-ups, and are
useful when resolving the singularities of elliptic schemes over higher dimensional
bases5[23].

Certain of the conditions in Table 1 have equivalent formulations in terms of
the number of roots of certain auxiliary polynomials. For example, the condition
v(b6) = 4 which applies to type IV , is equivalent to specifying that the polynomial

X2 +
a3

π
X +

a6

π2
(8)

has distinct roots in κ. The condition v(b6) = 8 which applies to type IV ∗, is
equivalent to specifying that

X2 +
a3

π2
X +

a6

π4
(9)

has distinct roots in κ. Finally, the condition v(c6) = 3 is equivalent to the condition
that

X3 +
a2

π
X2 +

a4

π2
X +

a6

π3
(10)

has three distinct roots in κ.

4.2. The Families In and I∗n

If Table 1 implies that the reduction type is in the family In, the conditions in
Table 2 can be used to determine the exact reduction type. Similarly, if a reduction
type is in the family I∗

n, Table 3 can be used to determine the exact type.
As before, certain conditions in Table 3 may be formulated in terms of the

number of roots of certain auxiliary polynomials. When k is odd, the condition
v(b8) = k implies that the polynomial

X2 +
a3

π
k−1

2

X +
a6

πk−1
(11)

5One approach applies Tate’s algorithm to an equation defined over a DVR which may have
characteristic zero, yet arises as the localization of a two dimensional ring in which 2 is not a unit.
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TABLE 2
Reduction types in the family In.

Type I1 I2 I3 I4 I5 · · ·
v(a1) 0+ 0+ 0+ 0+ 0+ · · ·
v(a2) 0+ 0+ 0+ 0+ 0+ · · ·
v(a3) 1+ 1+ 2+ 2+ 2+ · · ·
v(a4) 1+ 1+ 2+ 2+ 2+ · · ·
v(a6) 1 2+ 3 4+ 5 · · ·
v(b2) 0 0 0 0 0 · · ·
v(b8) 1 2 3 4 5 · · ·
v(d) 1 2 3 4 5 · · ·

TABLE 3
Reduction types in the family I∗

n, (char(κ) 6= 2).

Type I∗

1 I∗2 I∗3 I∗4 I∗5 · · ·
v(a1) 1+ 1+ 1+ 1+ 1+ · · ·
v(a2) 1 1 1 1 1 · · ·
v(a3) 2+ 3+ 3+ 4+ 4+ · · ·
v(a4) 3+ 3+ 4+ 4+ 5+ · · ·
v(a6) 4+ 5+ 6+ 7+ 8+ · · ·
v(b8) 5 6 7 8 9 · · ·
v(d) 7 8 9 10 11 · · ·

has distinct roots in κ. If k is even, the polynomial

a2

π
X2 +

a4

π
k

2

X +
a6

πk−1
(12)

has distinct roots in κ. These facts will be useful to the reader who wishes to
calculate the blow-ups for the types in Table 3.

Interestingly, Table 2 turns out to apply in all residue characteristics, and Table
3 still applies when char(κ) = 3.

4.3. Char 3 Residue Field

Here we treat the case where char(κ) = 3, and define the conditions on the
Weierstrass coefficients in Table 4. Notice the appearance of a new kind of condition
which is not needed when char(κ) 6= 2, 3. Namely, one of the conditions for the
new type Z1 is that a6 (mod π) is not a cube in κ. Similarly, one of the conditions
for the new type Z2 is that a6/π

3 (mod π) is not a cube in κ. Recall that we use
the notation 0nq and 3nq, for these new kinds of conditions in Table 4.

There are no new kinds of conditions appearing in the families In and I∗n when
char(κ) = 3. If Table 4 implies that the reduction type is in one of these families,
the same tables presented above, Table 2 and Table 3, may be used to determine
the exact type.

11



TABLE 4
Characteristic 3 Reduction Types

Type I0 In Z1 II III IV I∗

0 Z2 I∗n IV ∗ III∗ II∗ o/w
v(a2) 0 1+ 1+ 1+ 1+ 1+ 2+ 1 2+ 2+ 2+ 2+

v(a4) 1+ 1+ 1+ 1 2+ 2+ 3+ 3+ 3+ 3 4+ 4+

v(a6) 1+ 0nq 1 2+ 2 3+ 3nq 4+ 4 5+ 5 6+

v(d) 0 n 1+ 2+ 3 4+ 6 7+ 7+ 8+ 9 10+ 12+

TABLE 5
Characteristic 2 Reduction Types

Type I0 In X1 Y1 Kn II III IV Y2 I∗0 X2 I∗n IV ∗ Y3 III∗ II∗ o/w
v(a1) 0+ 0 1+ 1+ 1+ 1+ 1+ 1+ 1+ 1+ 1+ 1+ 1+ 1+ 1+ 1+ 1+

v(a2) 0+ 0+ 0+ 0+ 0ns 1+ 1+ 1+ 1+ 1+ 2+ 1 2+ 2+ 2+ 2+ 2+

v(a3) 0+ 1+ 1+ 1+ 1+ 1+ 1+ 1 2+ 2+ 2+ 2+ 2 3+ 3+ 3+ 3+

v(a4) 0+ 1+ 0ns 1+ 1+ 1+ 1 2+ 2+ 2+ 2ns 3+ 3+ 3+ 3 4+ 4+

v(a6) 0+ 1+ 0+ 0ns 1+ 1 2+ 2+ 2ns 3+ 4+ 4+ 4+ 4ns 5+ 5 6+

v(dF ) 0 3
v(d) 0 4 8 12+

4.4. Char 2 Residue Field

The case where char(κ) = 2 is the most interesting one. We define the conditions
on the Weierstrass equations in Table 5 associated to each reduction type. We see
several new kinds of condition in characteristic two. First, for each of the new
reduction types X1, Y1, X2, Y2, Y3, and for each of the new types in the family Kn,
one of the conditions is that a certain element is not a square in κ. Recall that in
Table 5 the notation ans means that ai/π

a (mod π) is not a square in κ.
A second new kind of condition is present for types I∗

0 . The auxiliary polynomial

F = X3 +
a2

π
X2 +

a4

π2
X +

a6

π3
(13)

must have distinct roots for type I∗

0 . We define dF = a2a4 − a6, the discriminant
of this polynomial (mod π), so that we may succinctly denote this condition by
v(dF ) = 3 in Table 5. Note that the conditions defined in this table imply that for
type X2 the polynomial (13) has a double root which is not κ-rational.

Reading The Table. Table 5 contains the most complex set of conditions on the
Weierstrass equation, so let us give an example of how to read the table columns.
Let f = 0, f ∈ R[x, y] be a Weierstrass equation. According to the first column, f
is of type I0 if v(d) = 0. According to the second column, f belongs to a type in
the In family if v(a1) = 0, v(a2) ≥ 0, v(a3) ≥ 1, v(a4) ≥ 1, and v(a6) ≥ 1, and we
consult Table 2 to determine exactly which type it is. The third column tells us
that f is of type X1 if v(a1) ≥ 1, v(a2) ≥ 0, v(a3) ≥ 1, v(a4) = 0, v(a6) ≥ 0, and
a4 is not a square in κ. Similarly, Table 5 defines conditions for the other reduction
types.

Consulting subcharts. Notice that Table 5 contains conditions for the three
infinite families In, Kn, and I∗n. If this table implies that the reduction type is in

12



TABLE 6
Reduction types in the family Kn.

Type K1 K2 K ′

2 K3 K4 K ′

4 K5 K6 K ′

6 · · ·
v(a1) 1+ 1+ 1+ 1+ 1+ 1+ 1+ 1+ 1+ · · ·
v(a2) 0ns 0ns 0ns 0ns 0ns 0ns 0ns 0ns 0ns · · ·
v(a3) 1+ 1+ 2+ 2+ 2+ 2+ 3+ 3+ 4+ · · ·
v(a4) 1+ 1+ 2+ 2+ 2+ 2+ 3+ 3+ 4+ · · ·
v(a6) 1 2+ 2nt 3 4+ 4nt 5 6+ 6nt · · ·
v(b8) 2 4 6 · · ·

one of these families, a sub-table must be consulted to determine the exact type.
For the family In, the conditions in Table 2 can be used to determine the exact
type. For the family Kn, Table 6, presented below, must be consulted. Finally,
for the family I∗

n, the conditions in Table 7, also presented below, can be used to
determine the exact type.

4.5. Char 2 Kn Detail

The family of reduction types Kn is a sequence of new reduction types which
appear only when char(κ) = 2. Each type in this family has the common condition
that a2 (mod π) is not a square in κ. Table 6 presents the conditions sufficient to
determine each reduction type in this family. Note that a new kind of condition,
denoted ant, is used for the types K ′

n, (n even). Recall that this condition has been
defined to mean that the quadratic curve in κ[X,Y ]

Y 2 = a2X
2 +

a6

πn
(14)

contains no κ-rational points. The notation ant was chosen because there is no
κ-rational point that can be translated.

4.6. Char 2 I∗

n Detail

The subfamily I∗

n for char(κ) = 2, differs from the usual subfamily I∗

n when
char(κ) 6= 2. Here, the family I∗

n also includes the new types Tn, for n > 0.
In Table 7, we present the conditions on the Weierstrass equations sufficient to
determine the type. Notice the conditions for the types Tn: for n odd we require
that a6

πn+3 not be a square in κ, and for n even we require that a6

a2πn+2 not be a
square in κ.

4.7. Translated Form Definitions

Having specified a set of conditions associated to each reduction type, we now
make a formal definition.

Definition 3. Let R be an arbitrary DVR with residue field κ, and let f ∈
R[x, y] define a Weierstrass equation. We say that the polynomial f , and the
Weierstrass equation f = 0 is in Translated Form if one of the following holds:

• char(κ) 6= 2, 3, and f meets all conditions for a type in Table 1.

13



TABLE 7
Reduction types in the family I∗

n.

Type I∗

1 T1 I∗2 T2 I∗3 T3 I∗4 T4 · · ·
v(a1) 1+ 1+ 1+ 1+ 1+ 1+ 1+ 1+ · · ·
v(a2) 1 1 1 1 1 1 1 1 · · ·
v(a3) 2 3+ 3+ 3+ 3 4+ 4+ 4+ · · ·
v(a4) 3+ 3+ 3 4+ 4+ 4+ 4 5+ · · ·
v(a6) 4+ 4ns 5+ 5 6+ 6 7+ 7 · · ·
v(a6/a2) 4ns 6ns · · ·
v(b8) 5 6+ 6 7+ 7 8+ 8 9+ · · ·

• for any κ, f meets all conditions for a type in Table 2.
• char(κ) 6= 2, and f meets all conditions for a type in Table 3.
• char(κ) = 3, and f meets all conditions for a type in Table 4.
• char(κ) = 2, and f meets all conditions for a type in Table 5.
• char(κ) = 2, and f meets all conditions for a type in Table 6.
• char(κ) = 2, and f meets all conditions for a type in Table 7.

This concludes the presentation of the tables of conditions, and the definition of
what it means for a Weierstrass equation to be in translated form. We next discuss
what to do with Weierstrass equations which are not in translated form.

5. TRANSLATING THE WEIERSTRASS EQUATION

In this section we prove that every Weierstrass equation may be put into trans-
lated form.

Theorem 5.1. Let R be an arbitrary DVR with residue field κ. Let f be a min-
imal Weierstrass equation with coefficients in R. There always exist R translations
x 7→ x′ + α and y 7→ y′ + βx + γ such that the modified Weierstrass equation is in
translated form.

There is an effective algorithm to compute these R-translations.

Because we will prove that the conditions presented in section 4 determine the
reduction type, the translations of Theorem 5.1 constitute the extention of Tate’s
algorithm to general DVRs. There are several components of the algorithm, each
corresponding to a table in section 4: There is one main procedure for each of the
cases:

• char(κ) 6= 2, 3.
• char(κ) = 3.
• char(κ) = 2.

There is also a secondary procedure for each of the four infinite families:

• In.
• I∗n (char(κ) 6= 2).
• I∗n (char(κ) = 2).
• Kn.

14



These procedures all follow a common paradigm, which we briefly discuss. In each
procedure, a Weierstrass equation is compared to the conditions described in the
columns of the table, until it successfully meets such a set of conditions. These
tests proceed in order of the columns (from left to right), and if a test fails, a
translation may be made before moving to the next column. So, to fully describe
each procedure, we simply need to specify which, if any, translations are to be
made when the conditions of a column are not met. If the conditions defined in the
rightmost columns of Tables 1, 4, or 5 are met, then we begin anew with a more
minimal Weierstrass equation.

Once the table of conditions is known, it is not difficult to recover the details
of the translations required to complete the definition of of each procedure. When
char(κ) 6= 2, 3, these translations are identical to those in Tate’s original algorithm.
We will provide details for the main procedure when char(κ) = 2, and also for
the secondary procedure for the family Kn. These are the two most interesting
procedures, and we leave the rest for the reader to discover, or find in [23].

5.1. Char(κ) = 2 Main Procedure

Let f be a Weierstrass equation with coefficients in R. The following 17 step
procedure will produce an R translation x 7→ x′ +α and y 7→ y′ +βx′ +γ such that
the revised coefficients {ai} satisfy the conditions of one of the types (or families of
types) in Table 5. The reader can most easily verify this proof by following along
with Table 5, sequentially examining the conditions and possible translations.

1. First suppose v(d) = 0. Then we have type I0 .

2. Suppose instead v(d) > 0 and v(a1) = 0. Translate via x = x′ − a3/a1

and compute new {ai}. Then v(a3) > 0. The singularity at (x, y) on the
special fiber satisfies df

dy = 2y0 + a1x0 + a3 = 0 (mod π). So now x = 0

at the singular point. Now translate via y = y′ + a4/a1, and compute new
{ai}. Now v(a4) > 0. The singularity at (x0, y0) on the special fiber satisfies
df
dx = a1y0 + a4 = 0 (mod π). So y=0 at the singular point as well. Next, the
fact that f(x0, y0) = 0 (mod π) implies that v(a6) > 0. So, collecting these
conditions, v(a1) = 0, v(a3) > 0, v(a4) > 0, and v(a6) > 0, we are in one of

the cases In . We then consult Table 2 to determine exactly which type it is.

3. Now suppose both v(d) > 0 and v(a1) > 0. Then the condition df
dy = 0 (mod

π) at the singular point (x0, y0) implies 2y0 + a1x0 + a3 = a3 = 0 (mod π).
So v(a3) > 0. Assume additionally that a4 is not a square in κ. Then we are

in the case X1 .

4. If instead a4 is a square in κ, translate via x = x′ + α where α2 = a4 (mod
π) and compute new {ai}. Now v(a4) > 0. If a6 is not a square in κ, we are

in the case Y1 .

5. If instead a6 is a square in κ, translate via y = y′ +α where α2 = a6 (mod π)
and compute new {ai}. Now v(a6) > 0. Assume that a2 is not a square in κ.

Then we are in one of the cases Kn , or K ′

n . We then consult Table 6 to

determine exactly which type it is.
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6. If instead a2 is a square in κ, translate via y = y′ + βx where β2 = a2 (mod
π) and compute new {ai}. Now v(a2) > 0. These cumulative translations
imply v(a1) ≥ 1, v(a2) ≥ 1, v(a3) ≥ 1, v(a4) ≥ 1, and v(a6) ≥ 1. Suppose

that additionally v(a6) = 1. Then we are in the case II .

7. Suppose instead v(a6) ≥ 2, and additionally v(a4) = 1. Then we are in the

case III .

8. Suppose instead v(a4) ≥ 2, and additionally v(a3) = 1. Then we are in the

case IV .

9. Suppose instead v(a3) ≥ 2, and additionally a6

π2 is not a square in κ. Then

we are in the case Y2 .

10. If instead a6

π2 is a square in κ, translate via y = y′ +α where α2 = a6

π2 (mod π)
and compute new {ai}. Now v(a6) ≥ 3. These cumulative translations imply
v(a1) ≥ 1, v(a2) ≥ 1, v(a3) ≥ 2, v(a4) ≥ 3, and v(a6) ≥ 3. So by reducing
a2

π , a4

π2 , and a6

π3 (mod π), we may form the polynomial in κ[X]:

F (X) = X3 +
a2

π
X2 +

a4

π2
X +

a6

π3
. (15)

If F (X) has distinct roots (or equivalently v(a2a4 + a6) = 3), then we are in

the case I∗

0 .

11. Otherwise F (X) has multiple roots. Suppose that F (X) has a double root
and a single root, and that the double root is not rational over κ. Then F (X)
factors as (X −α)(X2 − β) with β not a square in κ. This implies v(a4) = 2,
and β = a4

π2 is not a square in κ, so we may translate via x 7→ x′ +απ, so that

v(a2) ≥ 2, and v(a6) ≥ 4. Then we are in the case X2 .

12. Suppose instead that F (X) has a double root and a single root, and that the
double root is rational over κ. Then F (X) factors as (X −α) (X − β)2. Now
translate via x = x′ + βπ, and compute new {ai}. The new F (X) factors
as (X − α′)X2, with α′ 6= 0. Now v(a4) ≥ 3 and v(a6) ≥ 4, and v(a2) = 1.

We are therefore in one of the cases I∗

n , or Tn . We consult Table 7 to

determine exactly which type it is.

13. If instead F (X) has a triple root, F (X) factors as (X − α)3 with α ∈ κ.
(A triple root of a cubic in characteristic 2 must always be rational.) Now
translate via x = x′ + απ, and compute new {ai}. The new F (X) factors as
X3, so v(a4) ≥ 3, v(a6) ≥ 4, and v(a2) ≥ 2. Suppose additionally v(a3) = 2.

Then we are in the case IV ∗ .

14. If instead v(a3) ≥ 3 and a6

π4 is not a square in the residue field, then we are

in the case Y3 .

15. If a6

π4 is a square in κ, translate via y = y′ + α where α2 = a6

π4 (mod π) and
compute new {ai}. Now v(a6) ≥ 5. These cumulative translations imply
v(a1) ≥ 1, v(a2) ≥ 2, v(a3) ≥ 3, v(a4) ≥ 3, and v(a6) ≥ 5. Suppose that

additionally v(a4) = 3. Then we are in the case III∗ .
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16. If instead v(a4) ≥ 4 and v(a6) = 5, then we are in the case II∗ .

17. If v(a6) ≥ 6, the cumulative conditions are v(a1) ≥ 1, v(a2) ≥ 2, v(a3) ≥

3, v(a4) ≥ 4, and v(a6) ≥ 6. Then the Weierstrass equation is Not Minimal ,
so we replace the Weierstrass equation with a more minimal one via the
transformation a′

i = ai

πi , and start over at step one.

The Weierstrass equation has been transformed into translated form, and the
reduction type has been identified, unless the reduction type belongs to one of the
families In, Kn, K ′

n, I∗n, or Tn. In these cases, additional translations may be
needed to put f into translated form and determine the exact reduction type.

5.2. Procedure for Kn Family

Even if an equation meets the conditions of the family Kn according to Table 5,
it may still not be in fully translated form and in this case, the following procedure
completes the translations and determines exactly which type it is.

1. Let n = 1.

2. If v(a6) = n then we have a type Kn .

3. Let n = n + 1.

4. If v(b8) = n then we have a type Kn .

5. If Y 2 = a2X2 + a6/π
n (mod π) has no rational points, then we have a type

K ′

n .

6. Let X0 and Y0 be two elements in R such that (X0, Y0) reduces to the rational
point. Translate via x = x + X0π

n/2 and y = y + Y0π
n/2 so that v(a6) > n.

7. Let n = n + 1.

8. Go to step number 2.

6. CONSTRUCTING REGULAR MODELS WITH BLOW-UPS

In order to complete the proof of Theorem 3.1 and to prove that the procedures
described by Theorem 5.1 always serve as an algorithm to determine the reduction
type, we need to verify that the conditions defined in section 4 are correct. The
conditions associated to a particular type are correct if they imply that the sequence
of blow-ups produces a special fiber of that type. Thus, explicit calculations of
these blow-ups prove the following theorem. (In this section we denote a candidate
reduction type with Ξ.)

Theorem 6.1. Let R be an arbitrary DVR with residue field κ. Let f be a
minimal Weierstrass equation with coefficients in R, which is in translated form,
meeting the conditions associated to a reduction type Ξ. Let E/K be the elliptic
curve defined by f . Then there exists a sequence of blow-ups, (specified in [22, 24]),
which produce a regular model C, whose generic fiber is E/K, and whose special
fiber is of type Ξ.
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When κ is perfect, Theorem 6.1 is a restatement of Tate’s algorithm. One case
of this theorem, when κ is not perfect, is easy to prove. Namely, if the Weierstrass
equation f satisfies the conditions of a standard reduction type, the usual blow-ups
of Tate’s algorithm still produce the regular model. By verifying this, one proves
the lemma below. This proof amounts to a simple check that, for the standard
reduction types, the translations requested by Tate’s algorithm are all κ-rational.

Lemma 1. Let R be an arbitrary DVR, and let f be a minimal Weierstrass
equation with coefficients in R, in translated form, meeting the conditions associated
to a standard reduction type Ξ. Then the sequence of blow-ups specified in Tate’s
algorithm produces a regular model with the correct reduction type Ξ.

The remaining ingredients needed to complete Theorem 6.1 are the case-by-case
analyses for each new reduction type. For each of the new reduction types, following
Tate’s algorithm directly would entail making a non κ-rational translation.

Not being able to complete the sequence of blow-ups might seem to impede the
resolution of singularities. However, terminating the sequence of blow-ups at this
point already yields a regular scheme.

This implies that for each new reduction type, the required blow-ups follow the
same sequence as for one of the standard types. The correspondence (16) below
gives an example for each new reduction type of a standard type with the same
sequence of blow-ups.

Z1 Z2 X1 X2 Y1 Y2 Y3 K2n K ′

2n K2n+1 Tn

I0 I∗0 I0 I∗0 I0 IV IV ∗ I2n I2n I2n+1 I∗n
(16)

Having defined the sequence of blow-ups required for each new type, we should
now verify that the resulting schemes are all regular. Intuitively, this is true because
any would-be singularities are not κ-rational. We will now present complete details
in two representative cases: type Z1, and type Y2.

6.1. Char 3 Z1 Type

For our first example, will show that the conditions associated with Type Z1

are correct (i.e. the special fiber is a cuspidal cubic). We begin with the subscheme
of R[x, y] defined by an equation satisfying the conditions in the column of Table 4
that is labeled Z1. In other words, the cubic

y2 = x3 + a2x
2 + a4x + a6 (17)

satisfies v(a2) > 0, v(a4) > 0, v(a6) = 0, and the requirement that a6 is not a cube
in κ.

We now look for singularities and perform a blow-up if any are found. By
setting df

dy = 0, we find that any singular point must be contained in the subscheme

defined by π = 0, 2y = 0, and x3 + a6 = 0. Because char(κ) = 3, we know that
x3 + a6 = (x + α)3 (mod π) where α3 = a6. Thus the x-coordinate of the cusp is
the cube root of a6 (mod π), which is not κ-rational. Therefore the cusp does not
correspond to a singular point of C̃.

More precisely, the image of the geometric cusp in C̃ is the point defined by the
ideal m = (π, y, x3 + a6). This ideal is maximal, and because the polynomial (17)
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TABLE 8
Blowing up a Point on a Surface

Patch 1 y = x y1, π = xπ1.
Patch 2 x = y x1, π = y π1.
Patch 3 x = π x1, y = π y1.

is not zero (mod m2), the vector space m
m2 is two dimensional, and so this point is

a regular point. In fact, because the scheme defined by the polynomial (17) was
already regular, no blow-ups were required at all.

To summarize, the geometric special fiber C is a cuspidal cubic. However,
C̃ is everywhere regular and the cusp is only defined in a degree three extension
of κ. This phenomenon is only possible because in characteristic three, a cubic
polynomial need not be separable.

6.2. Char 2 Y2 Type

For our second example, we show that the conditions associated with Type Y2

are correct (i.e. its special fiber consists of two components, as in Figure 4). This
time, we begin with a subscheme of R[x, y] defined by an equation satisfying the
conditions in the column of Table 5 that is labeled Y2. In other words, the cubic

y2 + a1xy + a3y = x3 + a2x
2 + a4x + a6 (18)

satisfies v(a1) ≥ 1, v(a2) ≥ 1, v(a3) ≥ 2, v(a4) ≥ 2, v(a6) = 2, and the requirement
that a6

π2 is not a square in κ.
As usual, we now look for singularities and perform a blow-up if any are found.

By inspection, the geometric special fiber C is a cuspidal cubic curve. However, this
time the cusp is κ-rational and located at x = 0, y = 0. This point, considered as a
point of C/R, is defined by the ideal m = (x, y, π). By checking that dim(m/m2) =
3, we see that it is a singular point.

To resolve this singularity we blow-up C at the singular point. According to
our definition of a blow-up, the revised scheme is the closure of the graph of the
morphism to P 2(R) given by the coordinates (x, y, π). To be explicit, each of the
three affine coordinate patches is given by the change of variables in Table 8.

We focus on the third coordinate patch, which is the affine subscheme of R[x1, y1]
defined by

y2
1 + a1x1y1 +

a3

π
y1 = x3

1π + a2x
2
1 +

a4

π
x1 +

a6

π2
. (19)

The portion of C visible in this coordinate patch is the multiplicity 2 curve defined
by y2

1 = a6

π2 . Of course, this curve is only of multiplicity two because char(κ) = 2.

The image of this double line in C̃, however, is generically regular. This can be
seen by viewing it as the product of two regular schemes: Spec(κ[y1]/(y

2
1 − a6

π2 ))
and Spec(κ[x1]). We know that the first factor is regular because the polynomial
y2
1 − a6

π2 is irreducible. If one examines the first coordinate patch of the blow-up,
the original rational curve can be seen to intersect the double line transversally.

To summarize, the geometric special fiber consists of a rational curve intersecting
a double line transversally, and the image of this double line in C̃ is regular. Our
blow-up has explicitly constructed the reduction type Y2, defined in section 3. The
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fact that κ is not perfect admits the possibility that a quadratic polynomial might
not be separable.

This example is typical of the new reduction types in characteristic two: a
singular point or curve is only defined in a degree two extension of κ. For the types
requiring more than one blow-up, there may be many coordinate patches to keep
track of.

7. CONCLUSIONS AND FURTHER WORK

This concludes our description of the new reduction types, the presentation of
the extention to Tate’s algorithm, and the construction of the regular model. We
chose to center the discussion of the extended Tate’s algorithm around the valu-
ations of the Weierstrass coefficients because this description succinctly describes
the geometry and rationality of the special fiber.

The tables in this paper describe useful, albeit non-canonical, forms of Weier-
strass equations which reveal the special fiber type. The translated form of a
Weierstrass equation is also appealing since it automatically suggests the sequence
of blow-ups which will produce the regular minimal model.

For a particular choice of DVR R, (e.g Z[t](2)), the algorithm may be easily
implemented with a computer program, provided one has a procedure to check
whether elements of κ are squares, or cubes, and whether or not the quadratic
curves of the form (14) have any rational points.

7.1. Group Schemes and Néron Models

While the focus of this paper is the construction of regular models, it is natural
to ask for a description of these models in terms of Group Schemes and Néron
models. When κ is perfect, we know that the Néron model of an elliptic curve
coincides with the smooth part of a flat proper regular minimal model of the curve.
In fact, the following statement does not require the assumption that κ is perfect.

Proposition 7.1.1. Let R be an arbitrary DVR, let K = frac(R), and let
E/K be an elliptic curve. Let C be a flat proper regular minimal model of E/K,
and let Csm/R be the smooth part of C/R. Then Csm/R is the Néron model of
E/K.

Essentially the same techniques used to prove this when κ is perfect [2, 22],
apply more generally. The approach is to first show that the smooth part of the
regular model is a group scheme, and then use the assumptions of minimality and
smoothness to obtain the Néron mapping property. Because the accounts available
in the literature assume that κ is perfect, Lorenzini and Liu have explicitly presented
a proof in [15].

Proposition 7.1.1 implies that the regular models constructed in this paper yield
Néron models once the singular points on the special fiber have been discarded.
Focusing on the case when the special fiber is a new reduction type, we see that
the special fiber of the Néron model, Csm, has at most two components. The order
of the component group is specified in the following table.

Z1 Z2 X1 X2 Y1 Y2 Y3 K2n K ′

2n K2n+1 Tn

1 1 1 2 1 1 1 2 1 1 2
(20)
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While the minimality and smoothness of Csm can be used to show that it is a
group scheme, in our case this is also possible with direct calculations. This is not
difficult since there are at most two components. Let W denote the smooth part
of the elliptic scheme defined by a Weierstrass equation. If the special fiber of the
Néron model has only a single component, then W = Csm, and we check that it is a
group scheme by examining the elliptic curve’s addition formula. One then checks
that the three projective coordinates of the addition map Csm × Csm → Csm are
never simultaneously zero, and therefore the group law on E/K immediately makes
Csm into a group scheme.

The special fiber has two components only for reduction types X2, K2n, and
Tn. In such a case there exists an R-valued point, P , which reduces to the cusp in
W . Translating by P yields an automorphism of Csm of order two. By using this
translation to identify the generic fibers of two copies of W , a scheme isomorphic
to Csm is produced. With this simpler description, it is straightforward to extend
the group law on E/K to a morphism, proving that Csm is a group scheme.

7.2. Applications and Further Work

Elliptic Schemes The original motivation for this work was the study of elliptic
schemes over higher dimensional base schemes. This work is presented in [23] where
schemes of arbitrary dimension are considered, and an algorithm to construct a
regular scheme is presented. In this context, most of the DVRs which appear have
non-perfect residue fields, and new phenomenon occur due to the fact that the
discriminant may not be irreducible in the local rings of the base. We showed that
it is possible to always construct flat regular models over high dimensional bases
when charκ > 3. For the other cases, it was still true that the algorithms always
terminated in our experiments, yet this was not proved for every (regular) base
scheme. It would be interesting to explore relationships with the general resolution
of singularities [1], and the generalization which allows finite extentions[12].

Extentions and Representations A natural extention of this work is the
study of how the reduction types change with finite extentions R′/R. Contrary to
the perfect residue field case, the geometric special fiber of the regular model can
change when an unramified extention of κ is made.

It is also natural to look for an appropriate definition of a conductor in the
case when κ is not perfect. This would involve finding a good definition for the
higher ramification groups needed to define the Swan representation. If a good
definition can be made, can we find a relationship between the valuation of the
conductor, discriminant, and number of components in the regular model? This
would attempt to generalize Ogg’s formula, treated by Ogg [19] when char(κ) 6= 2,
and by Saito[20] in general. (Liu specializes this to elliptic curves in [14].) Ogg’s
formula is the commonly used tool to compute the exponent in the conductor of an
elliptic curve when char(κ) = 2, or char(κ) = 3.

Component Pairings As described in the introduction, the new reduction
types of section 3 have been applied to the study of the Grothendieck pairing on
an elliptic curve. This map pairs a component of the special fiber of the Néron
model with a component of the special fiber of the dual Néron model, and produces
an element of Q/Z. Bertapelle, Bosch, and Lorenzini[3, 4, 5, 16] compared this
pairing with the matrix of intersection multiplicities of the special fiber in a regular
proper model of an elliptic curve or jacobian. With this new tool, they computed
the Grothendieck pairing explicitly, discovering cases for which it is not perfect.
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